共查询到20条相似文献,搜索用时 15 毫秒
1.
Yao X Bleile DW Yuan Y Chao J Sarathy KP Sanders DA Pinto BM O'Neill MA 《Proteins》2009,74(4):972-979
UDP-Galactopyranose mutase (UGM) is a flavoenzyme that catalyzes interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf); its activity depends on FAD redox state. The enzyme is vital to many pathogens, not native to mammals, and is an important drug target. We have probed binding of substrate, UDP-Galp, and UDP to wild type and W160A UGM from K. pneumoniae, and propose that substrate directs recognition loop dynamics by bridging distal FAD and W160 sites; W160 interacts with uracil of the substrate and is functionally essential. Enhanced Trp fluorescence upon substrate binding to UGM indicates conformational changes remote from the binding site because the fluorescence is unchanged upon binding to W70F/W290F UGM where W160 is the sole Trp. MD simulations map these changes to recognition loop closure to coordinate substrate. This requires galactose-FAD interactions as Trp fluorescence is unchanged upon substrate binding to oxidized UGM, or binding of UDP to either form of the enzyme, and MD show heightened recognition loop mobility in complexes with UDP. Consistent with substrate-directed loop closure, UDP binds 10-fold more tightly to oxidized UGM, yet substrate binds tighter to reduced UGM. This requires the W160-U interaction because redox-switched binding affinity of substrate reverses in the W160A mutant where it only binds when oxidized. Without the anchoring W160-U interaction, an alternative binding mode for UDP is detected, and STD-NMR experiments show simultaneous binding of UDP-Galp and UDP to different subsites in oxidized W160A UGM: Substrate no longer directs recognition loop dynamics to coordinate tight binding to the reduced enzyme. 相似文献
2.
UDP-galactopyranose mutase (UGM) is the key enzyme involved in the biosynthesis of Galf. In this study, reliable structural binding modes of the natural substrate, UDP-Galp, and inhibitor, UDP, in the UGM active site were provided with the combined use of STD-NMR spectroscopy, molecular modeling, and CORCEMA-ST calculations. UDP-Galp and UDP exhibited similar binding epitopes recognized by UGM. However, the relative binding affinities of the ligands changed dramatically upon reduction of UGM, as explored by competitive STD-NMR experiments. UDP-Galp competes with UDP for binding to UGM, especially when UGM is in its reduced state. Docking studies for predicting the binding mode within the active site of the two monomers in UGM explored the possibility that the mobile loop might act as a gateway for substrate binding, and the structure of the binding cleft in monomer A might be a closer approximation of the substrate-bound active site than monomer B. Important information regarding the critical interactions of UGM with UDP-Galp has been obtained. 相似文献
3.
The galactofuranose moiety found in many surface constituents of microorganisms is derived from UDP-D-galactopyranose (UDP-Galp) via a unique ring contraction reaction catalyzed by a FAD-dependent UDP-Galp mutase. When the enzyme is reduced by sodium dithionite, its catalytic efficiency increases significantly. Since the overall transformation exhibits no net change in the redox state of the parties involved, how the enzyme-bound FAD plays an active role in the reaction mechanism is puzzling. In this paper, we report our study of the catalytic properties of UDP-Galp mutase reconstituted with deaza-FADs. It was found that the mutase reconstituted with FAD or 1-deazaFAD has comparable activity, while that reconstituted with 5-deazaFAD is catalytically inactive. Because 5-deazaFAD is restricted to net two-electron process, yet FAD and 1-deazaFAD can undergo concerted two-electron as well as stepwise one-electron redox reactions, the above results support a radical mechanism for the mutase catalyzed reaction. In addition, the activity of the mutase reconstituted with FAD was found to increase considerably at high pHs. These observations have allowed us to propose a new mechanism involving one-electron transfer from the reduced FAD to an oxocarbenium intermediate generated by C-1 elimination of UDP to give a hexose radical and a flavin semiquinone. Subsequent radical recombination leads to a coenzyme-substrate adduct which may play a central role to facilitate the opening and recyclization of the galactose ring. A deprotonation step, accompanied or followed the electron transfer step, to increase the nucleophilicity of the flavin radical anion may account for the activity enhancement at pH > 8. 相似文献
4.
UDP-galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the reversible conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). As in prokaryotic UGMs, the flavin needs to be reduced for the enzyme to be active. Here we present the first eukaryotic UGM structures from Aspergillus fumigatus (AfUGM). The structures are of UGM alone, with the substrate UDP-Galp and with the inhibitor UDP. Additionally, we report the structures of AfUGM bound to substrate with oxidized and reduced flavin. These structures provide insight into substrate recognition and structural changes observed upon substrate binding involving the mobile loops and the critical arginine residues Arg-182 and Arg-327. Comparison with prokaryotic UGM reveals that despite low sequence identity with known prokaryotic UGMs the overall fold is largely conserved. Structural differences between prokaryotic UGM and AfUGM result from inserts in AfUGM. A notable difference from prokaryotic UGMs is that AfUGM contains a third flexible loop (loop III) above the si-face of the isoalloxazine ring that changes position depending on the redox state of the flavin cofactor. This loop flipping has not been observed in prokaryotic UGMs. In addition we have determined the crystals structures and steady-state kinetic constants of the reaction catalyzed by mutants R182K, R327K, R182A, and R327A. These results support our hypothesis that Arg-182 and Arg-327 play important roles in stabilizing the position of the diphosphates of the nucleotide sugar and help to facilitate the positioning of the galactose moiety for catalysis. 相似文献
5.
Uridine-5'-diphospho-beta-L-arabinofuranose, a possible donor of L-arabinofuranose residues in plants, was synthesized. This compound, in the presence of UDP-galactopyranose mutase, underwent interconversion with UDP-beta-L-arabinopyranose that is a likely precursor of L-arabinofuranose in vivo. This result provided a working model for the biogenesis of arabinofuranose in plants. 相似文献
6.
Beis K Srikannathasan V Liu H Fullerton SW Bamford VA Sanders DA Whitfield C McNeil MR Naismith JH 《Journal of molecular biology》2005,348(4):971-982
Uridine diphosphogalactofuranose (UDP-Galf) is the precursor of the d-galactofuranose sugar found in bacterial and parasitic cell walls, including those of many pathogens. UDP-Galf is made from UDP-galactopyranose by the enzyme UDP-galactopyranose mutase. The enzyme requires the reduced FADH- co-factor for activity. The structure of the Mycobacterium tuberculosis mutase with FAD has been determined to 2.25 A. The structures of Klebsiella pneumoniae mutase with FAD and with FADH- bound have been determined to 2.2 A and 2.35 A resolution, respectively. This is the first report of the FADH(-)-containing structure. Two flavin-dependent mechanisms for the enzyme have been proposed, one, which involves a covalent adduct being formed at the flavin and the other based on electron transfer. Using our structural data, we have examined the two mechanisms. The electron transfer mechanism is consistent with the structural data, not surprisingly, since it makes fewer demands on the precise positioning of atoms. A model based on a covalent adduct FAD requires repositioning of the enzyme active site and would appear to require the isoalloxazine ring of FADH- to buckle in a particular way. However, the FADH- structure reveals that the isoalloxazine ring buckles in the opposite sense, this apparently requires the covalent adduct to trigger profound conformational changes in the protein or to buckle the FADH- opposite to that seen in the apo structure. 相似文献
7.
Michelle Oppenheimer Todd L. Lowary Pablo Sobrado 《Archives of biochemistry and biophysics》2010,502(1):31-556
UDP-galactopyranose mutase (UGM) is a flavin-containing enzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, the precursor of galactofuranose, which is an important cell wall component in Aspergillus fumigatus and other pathogenic microbes. A. fumigatus UGM (AfUGM) was expressed in Escherichia coli and purified to homogeneity. The enzyme was shown to function as a homotetramer by size-exclusion chromatography and to contain ∼50% of the flavin in the active reduced form. A kcat value of 72 ± 4 s−1 and a KM value of 110 ± 15 μM were determined with UDP-galactofuranose as substrate. In the oxidized state, AfUGM does not bind UDP-galactopyranose, while UDP and UDP-glucose bind with Kd values of 33 ± 9 μM and 90 ± 30 μM, respectively. Functional and structural differences between the bacterial and eukaryotic UGMs are discussed. 相似文献
8.
Dhatwalia R Singh H Oppenheimer M Karr DB Nix JC Sobrado P Tanner JJ 《The Journal of biological chemistry》2012,287(12):9041-9051
UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 Å to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design. 相似文献
9.
Sun HG Ruszczycky MW Chang WC Thibodeaux CJ Liu HW 《The Journal of biological chemistry》2012,287(7):4602-4608
UDP-galactopyranose mutase (UGM) requires reduced FAD (FAD(red)) to catalyze the reversible interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf). Recent structural and mechanistic studies of UGM have provided evidence for the existence of an FAD-Galf/p adduct as an intermediate in the catalytic cycle. These findings are consistent with Lewis acid/base chemistry involving nucleophilic attack by N5 of FAD(red) at C1 of UDP-Galf/p. In this study, we employed a variety of FAD analogues to characterize the role of FAD(red) in the UGM catalytic cycle using positional isotope exchange (PIX) and linear free energy relationship studies. PIX studies indicated that UGM reconstituted with 5-deaza-FAD(red) is unable to catalyze PIX of the bridging C1-OP(β) oxygen of UDP-Galp, suggesting a direct role for the FAD(red) N5 atom in this process. In addition, analysis of kinetic linear free energy relationships of k(cat) versus the nucleophilicity of N5 of FAD(red) gave a slope of ρ = -2.4 ± 0.4. Together, these findings are most consistent with a chemical mechanism for UGM involving an S(N)2-type displacement of UDP from UDP-Galf/p by N5 of FAD(red). 相似文献
10.
Oppenheimer M Valenciano AL Sobrado P 《Biochemical and biophysical research communications》2011,(3):552-556
Human parasitic pathogens of the genus Leishmania are the causative agents of cutaneous, mucocutaneous, and visceral leishmaniasis. Currently, there are millions of people infected with these diseases and over 50,000 deaths occur annually. Recently, it was shown that the flavin-dependent enzyme UDP-galactopyranose mutase (UGM) is a virulence factor in Leishmania major. UGM catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose. The product, UDP-galactofuranose, is the only source of galactofuranose which is present on the cell surface of this parasite and has been implicated to be important for host-parasite interactions. The recombinant form of this enzyme was obtained in a soluble and active form. The enzyme was shown to be active only in the reduced state. A kcat value of 5 ± 0.2 s−1 and a KM value of 87 ± 11 μM were determined with UDP-galactofuranose as the substrate. Different from the dimeric bacterial and tetrameric fungal UGMs, this parasitic enzyme functions as a monomer. 相似文献
11.
Galactofuranose biosynthesis in Escherichia coli K-12: identification and cloning of UDP-galactopyranose mutase. 下载免费PDF全文
P M Nassau S L Martin R E Brown A Weston D Monsey M R McNeil K Duncan 《Journal of bacteriology》1996,178(4):1047-1052
We have cloned two open reading frames (orf6 and orf8) from the Escherichia coli K-12 rfb region. The genes were expressed in E. coli under control of the T7lac promoter, producing large quantities of recombinant protein, most of which accumulated in insoluble inclusion bodies. Sufficient soluble protein was obtained, however, for use in a radiometric assay designed to detect UDP-galactopyranose mutase activity (the conversion of UDP-galactopyranose to UDP-galactofuranose). The assay is based upon high-pressure liquid chromatography separation of sugar phosphates released from both forms of UDP-galactose by phosphodiesterase treatment. The crude orf6 gene product converted UDP-[alpha-D-U-14C]-galactopyranose to a product which upon phosphodiesterase treatment gave a compound with a retention time identical to that of synthetic alpha-galactofuranose-1-phosphate. No mutase activity was detected in extracts from cells lacking the orf6 expression plasmid or from orf8-expressing cells. The orf6 gene product was purified by anion-exchange chromatography and hydrophobic interaction chromatography. Both the crude extract and the purified protein converted 6 to 9% of the UDP-galactopyranose to the furanose form. The enzyme was also shown to catalyze the reverse reaction; in this case an approximately 86% furanose-to-pyranose conversion was observed. These observations strongly suggest that orf6 encodes UDP-galactopyranose mutase (EC 5.4.99.9), and we propose that the gene be designated glf accordingly. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified UDP-galactopyranose mutase revealed one major band, and analysis by electrospray mass spectrometry indicated a single major species with a molecular weight of 42,960 +/- 8, in accordance with that calculated for the Glf protein. N-terminal sequencing revealed that the first 15 amino acids of the recombinant protein corresponded to those expected from the published sequence. UV-visible spectra of purified recombinant enzyme indicated that the protein contains a flavin cofactor, which we have identified as flavin adenine dinucleotide. 相似文献
12.
UDP-galactopyranose mutase (UGM) catalyzes the isomerization of UDP-galactopyranose (UDP-Galp) into UDP-galactofuranose (UDP-Galf), an essential step of the mycobacterial cell wall biosynthesis. The first mechanistic assumption proposed in the literature was the involvement of 1,4-anhydrogalactose 1 as intermediate of this ring contraction. To confirm or rule out this hypothesis, we synthesized 1 and engaged it in reactions with UGM. The expected formations of UDP-Galf and UDP-Galp were never observed, thus showing that 1 is not, in fact, a low energy intermediate of this enzymatic contraction. 相似文献
13.
Kleczka B Lamerz AC van Zandbergen G Wenzel A Gerardy-Schahn R Wiese M Routier FH 《The Journal of biological chemistry》2007,282(14):10498-10505
Considering the high incidence of galactofuranose (Gal(f)) in pathogens and its absence from higher eukaryotes, the enzymes involved in the biosynthesis of this unusual monosaccharide appear as attractive drug targets. However, although the importance of Gal(f) in bacterial survival or pathogenesis is established, its role in eukaryotic pathogens is still undefined. Recently, we reported the identification and characterization of the first eukaryotic UDP-galactopyranose mutases. This enzyme holds a central role in Gal(f) metabolism by providing UDP-Gal(f) to all galactofuranosyltransferases. In this work, the therapeutical potential of Gal(f) metabolism in Leishmania major was hence evaluated by targeted replacement of the GLF gene encoding UDP-galactopyranose mutase. In L. major, Gal(f) is present in the membrane anchor of the lipophosphoglycan (LPG) and in glycoinositolphospholipids. Accordingly, the generated glf(-) mutant is deficient in LPG backbone and expresses truncated glycoinositolphospholipids. These structural changes do not influence the in vitro growth of the parasite but lead to an attenuation of virulence comparable with that observed with a mutant exclusively deficient in LPG. 相似文献
14.
Guillaume Eppe Pauline Peltier Richard Daniellou Caroline Nugier-Chauvin Vincent Ferrières Stéphane P. Vincent 《Bioorganic & medicinal chemistry letters》2009,19(3):814-816
UDP-galactopyranose mutase (UGM) catalyzes the isomerization of UDP-galactopyranose (UDP-Galp) into UDP-galactofuranose (UDP-Galf), an essential step of the mycobacterial cell wall biosynthesis. UDP-(6-deoxy-6-fluoro)-d-galactofuranose 1 was tested as substrate of UGM. Turnover could be observed by HPLC. The kcat (7.4 s?1) and the Km (24 mM) of 1 were thus measured and compared with those of UDP-Galf and other fluorinated analogs. The presence of the fluorine atom at the 6-position had a moderate effect on the rate of the reaction but a huge one on the interactions between the enzyme and its substrate. This result demonstrated that key interactions occur at the vicinity of the 6-position of UDP-galactose in the Michaelis complex. 相似文献
15.
Two sulfonium salts of 1,4-anhydro-4-thio-D-galactitol, with structures related to the known sulfonium salt glycosidase inhibitor, salacinol, have been synthesized as potential inhibitors of UDP-galactopyranose mutase. The synthetic strategy relies on the alkylation reaction of 1,4-anhydro-2,3,5,6-tetra-O-benzyl-4-thio-D-galactitol at the sulfur atom with 2,4-O-benzylidene-D- or -L-erythritol-1,3-cyclic sulfate. In each case, the reaction proceeded stereoselectively to yield only one stereoisomer at the stereogenic sulfur atom. The effect of the polar solvent, 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), in promoting high-yielding reactions is highlighted. The target compounds are then obtained by hydrogenolysis. 相似文献
16.
UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, the precursor of galactofuranose (Galf). Galf is found in several pathogenic organisms, including the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Galf) is important for virulence and is not present in humans, making its biosynthetic pathway an attractive target for the development of new drugs against T. cruzi. Although UGMs catalyze a non-redox reaction, the flavin must be in the reduced state for activity and the exact role of the flavin in this reaction is controversial. The kinetic and chemical mechanism of TcUGM was probed using steady state kinetics, trapping of reaction intermediates, rapid reaction kinetics, and fluorescence anisotropy. It was shown for the first time that NADPH is an effective redox partner of TcUGM. The substrate, UDP-galactopyranose, protects the enzyme from reacting with molecular oxygen allowing TcUGM to turnover ~1000 times for every NADPH oxidized. Spectral changes consistent with a flavin iminium ion, without the formation of a flavin semiquinone, were observed under rapid reaction conditions. These data support the proposal of the flavin acting as a nucleophile. In support of this role, a flavin-galactose adduct was isolated and characterized. A detailed kinetic and chemical mechanism for the unique non-redox reaction of UGM is presented. 相似文献
17.
Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues 总被引:1,自引:0,他引:1
The flavoenzyme UDP-galactopyranose mutase (UGM) is a mediator of cell wall biosynthesis in many pathogenic microorganisms. UGM catalyzes a unique ring contraction reaction that results in the conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UDP-Galf is an essential precursor to the galactofuranose residues found in many different cell wall glycoconjugates. Due to the important consequences of UGM catalysis, structural and biochemical studies are needed to elucidate the mechanism and identify the key residues involved. Here, we report the results of site-directed mutagenesis studies on the absolutely conserved residues in the putative active site cleft. By generating variants of the UGM from Klebsiella pneumoniae, we have identified two arginine residues that play critical catalytic roles (alanine substitution abolishes detectable activity). These residues also have a profound effect on the binding of a fluorescent UDP derivative that inhibits UGM, suggesting that the Arg variants are defective in their ability to bind substrate. One of the residues, Arg280, is located in the putative active site, but, surprisingly, the structural studies conducted to date suggest that Arg174 is not. Molecular dynamics simulations indicate that closed UGM conformations can be accessed in which this residue contacts the pyrophosphoryl group of the UDP-Gal substrates. These results provide strong evidence that the mobile loop, noted in all the reported crystal structures, must move in order for UGM to bind its UDP-galactose substrate. 相似文献
18.
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 ? movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens. 相似文献
19.
The syntheses of two ammonium salts of 1,4-dideoxy-1,4-imino-d-galactitol containing erythritol sulfate side chains are described. The parent compound is a known inhibitor of the enzyme UDP-galactopyranose mutase (UDP-galactopyranose furanomutase, E.C. 5.4.99.9), which is responsible for the conversion of UDP-galactopyranose into UDP-galactofuranose and is presumably protonated in its active form. The side chain was chosen because it is present in a known sulfonium ion alpha-glucosidase inhibitor, salacinol. The syntheses of the selenonium analogues derived from 1,4-dideoxy-1,4-seleno-d-galactitol are also described. The synthetic strategy in the syntheses of all four salts involved the nucleophilic attack of a protected derivative of the alditol at the least hindered carbon of 2,4-O-benzylidene d- or l-erythritol-1,3-cyclic sulfate to give adducts that were subsequently deprotected. The importance of different protecting groups used in the various syntheses is also highlighted. Enzyme inhibition assays carried out on these compounds, and the corresponding sulfonium ions synthesized previously, show that they are poor inhibitors of UDP-galactopyranose mutase. 相似文献
20.
The novel UDP-sugar uridine 5'-(3-deoxy-3-fluoro-D-galactopyranosyl diphosphate) (1) and UDP-(2-deoxy-2-fluoro)-D-galactose (2) have been prepared enzymatically and tested as substrate analogues for the enzyme UDP-galactopyranose mutase (UDP-Galp mutase EC 5.4.99.9). Turnover of both 1 and 2 by UDP-Galp mutase was observed by HPLC and 19F NMR. The HPLC elution profile and 19F chemical shift of the products are consistent with the formation of the predicted furanose forms of 1 and 2. The Km values for compounds 1 and 2 were similar to those of the natural substrate UDP-Galp (0.26 mM for 1, 0.2 mM for 2, and 0.6 mM for UDP-Galp), but the values for kcat were substantially different (1.6/min for 1, 0.02/min for 2, and 1364/min for UDP-Galp). A correlation was also observed between the equilibrium yield of product formed during turnover of UDP-sugar by UDP-Galp mutase (UDP-Galp, compound 1 or compound 2), and the amount of furanose present for the free sugar at thermal equilibrium in aqueous solution, using 1H and 19F NMR spectroscopy. The implications of these results to the mechanism of the unusual enzymatic reaction are discussed. 相似文献