首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adherence of neutrophils to endothelium is a key event in the sequence of inflammatory leukocyte responses. Double-color FACS analysis was used to determine the extent and kinetics of neutrophil adherence to rIL-1 beta-pretreated endothelial cells (EC). Neutrophils bound very avidly when the EC were prestimulated for 4 to 6 h with rIL-1 beta. Anti-ELAM-1 F(ab)2 fragments inhibited this adherence for more than 80%. On the other hand, anti-CD18 F(ab)2 fragments also inhibited the neutrophil adherence (40 to 50%). Combined use of anti-ELAM-1 and anti-CD18 F(ab)2 fragments completely prevented adherence. Neutrophils became activated as soon as they made contact with the rIL-1 beta-pretreated EC. First, neutrophils depleted of intracellular ATP showed a clearly decreased adherence completely dependent on ELAM-1-mediated binding, i.e., without additional effects of CD18 adhesion proteins. Thus, CD18 is activated during neutrophil adherence and then participates in the binding process. Secondly, the neutrophils responded with a transient rise in [Ca2+]i upon binding to rIL-1 beta-pretreated EC, which was demonstrated to be caused by endothelial cell-associated platelet-activating factor (PAF). However, the extent of neutrophil adherence to rIL-1 beta-pretreated EC was not affected by the use of the PAF-receptor antagonist WEB 2086, or removal of the EC-bound PAF. The only effect was a complete dependency of the neutrophil adherence on ELAM-1-mediated binding, although anti-CD18 mAb still induced 40 to 50% inhibition under these conditions. We therefore conclude that ELAM-1-mediated binding is the major mechanism for CD18 activation during neutrophil adherence to rIL-1 beta-pretreated EC.  相似文献   

2.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

3.
Murine anti-CD14 mAb which recognize different CD14 epitopes induced marked homotypic adhesion of normal human monocytes. Induction of aggregation by anti-CD14 mAb required Mg2+, occurred at an optimal temperature of 37 degrees C, but not at 4 degrees C, and exhibited a kinetics which differed from adhesion triggered by IFN-gamma and anti-CD43 mAb. Monocyte adhesion induced by anti-CD14 mAb required neither Fcy gamma R engagement nor cross-linking of CD14, because adhesion was induced by F(ab)'2 fragments, as well as by monovalent F(ab) fragments of anti-CD14 mAb. mAb to CD11a, CD18, and intercellular adhesion molecule-1 (ICAM-1), but not antibodies to CD11b and CD11c, inhibited monocyte adhesion induced by CD14 engagement. These results indicate that CD14-dependent adhesion is mediated by lymphocyte function-associated Ag-1/ICAM-1 interactions. This was confirmed by the absence of aggregation in anti-CD14-stimulated cells from a patient with leukocyte adhesion deficiency. Monocyte adhesion upon CD14 engagement was blocked by an inhibitor of protein kinases, sphingosine. This suggests that protein kinases play a role in the intracellular signaling pathway(s) which couple CD14 to lymphocyte function-associated Ag-1/ICAM-1.  相似文献   

4.
The mAb 60.3 recognizes the neutrophil CD18 Ag. We have investigated the effect of in vitro pretreatment of radiolabeled neutrophils with mAb 60.3 on their accumulation in vivo. Further, we have compared the in vivo effects of mAb 60.3 with its effects on neutrophil adherence in vitro. Neutrophil accumulation in vivo was measured in response to: 1) exogenous mediators FMLP, C5a des Arg, LTB4 and IL-1; 2) endogenous mediators generated in a non-allergic inflammatory reaction induced by zymosan; and 3) endogenous mediators generated in two allergic inflammatory reactions, a passive cutaneous anaphylactic reaction and a reversed passive Arthus reaction in rabbit skin. Pretreatment of neutrophils with mAb 60.3 inhibited their accumulation in all the responses. The results demonstrate that there is a common mechanism mediating neutrophil accumulation in these inflammatory reactions. Neutrophils pretreated with mAb 60.3 were also unresponsive to chemoattractants in in vitro adherence assays. However, the antibody-treated neutrophils responded normally to FMLP and C5a with respect to granular enzyme release. These results suggest that the basal expression of CD18 Ag is important for the adherence of neutrophils to microvascular endothelial cells stimulated by the local generation, or administration, of chemical mediators in vivo. Despite the fact that mediators such as FMLP can increase CD18 expression in vitro, it appears more likely that such mediators act in vivo by inducing a conformational change in the basally expressed neutrophil adhesive molecules.  相似文献   

5.
Neutrophil migration to lung alveoli is a characteristic of lung diseases and is thought to occur primarily via capillaries rather than postcapillary venules. The role of adhesion molecules CD18 and CD29 on this migration in a mouse model of lung inflammation has been investigated. The number of neutrophils present in bronchoalveolar lavage fluid was determined 4 h after intratracheal instillation of LPS (0.1-1 microg) or murine recombinant KC (CXC chemokine, 0.03-0.3 microg). Both stimuli produced a dose-related increase in neutrophil accumulation. Intravenous anti-mouse CD18 mAb, 2E6 (0.5 mg/mouse), significantly (p < 0.001) attenuated LPS (0.3 microg)- but not KC (0.3 microg)-induced neutrophil accumulation. The anti-mouse CD29 mAb, HM beta 1-1 (0.02 mg/mouse), significantly (p < 0.05) inhibited both LPS (0.3 microg)- and KC (0.3 microg)-induced neutrophil migration. A second mAb to CD18 (GAME-46) and both F(ab')(2) and Fab of HM beta 1-1 produced similar results to those above, while coadministration of mAbs did not result in greater inhibition. Electron microscopy studies showed that CD29 was involved in the movement of neutrophils from the interstitium into alveoli. The effect of mAbs to CD49 (alpha integrin) subunits of CD29 was also examined. mAbs to CD49e and CD49f inhibited both responses, while anti-CD49b and CD49d significantly inhibited responses to KC only. These data suggest that CD29 plays a critical role in neutrophil migration in pulmonary inflammation and that CD49b and CD49d mediate CD18-independent neutrophil accumulation.  相似文献   

6.
CD40 signaling activates CD11a/CD18 (LFA-1)-mediated adhesion in B cells.   总被引:4,自引:0,他引:4  
Cell-cell adhesion events play critical roles in the sequential migrations and multiple specific cell-cell interactions which B cells undergo during normal development and function. We have observed that mAb to several B cell-associated molecules, including mAb to CD19, CD37, and CD40, induce homotypic aggregation of freshly isolated human B cells. The aggregation of B cells induced by CD40 mAb was due to activation of a cell-cell adhesion system, and not due to agglutination by mAb, because 1) in addition to being energy dependent and cation dependent, the aggregation was blocked by inhibitors of messenger RNA and protein synthesis; and 2) a mouse B cell line transformed with intact human CD40 aggregated in response to CD40 mAb, whereas a line expressing surface CD40, but lacking the cytoplasmic tail and previously shown incapable of transmitting a signal from the cell surface, did not aggregate. The aggregation, although of slow onset, was persistent and of high avidity. In addition, CD40 mAb induced increased surface expression of intercellular adhesion molecule-1 (CD54), a ligand for CD11a/CD18 (LFA-1), and CD18 mAb blocked aggregation. CD40 mAb also augmented the ability of dense B cells to stimulate the proliferation of allogeneic T cells via a CD18-dependent process. We conclude that signaling through CD40, elicited by cross-linking the CD40 protein on the cell surface, activates the CD18/intercellular adhesion molecule adhesion system; in addition, CD40 cross-linking may activate a second adhesion system since CD40 mAb induced aggregation of the B cell line Ramos, which does not express surface CD18. B cell adhesion may be triggered by signaling through multiple surface proteins, thereby lending specificity of activation to adhesion systems which are broadly expressed.  相似文献   

7.
ART-18, a mouse IgG1 mAb recognizing the IL-2 binding domain of the rat p55 subunit IL-2R molecule, prevents graft rejection in various experimental models, although its mechanism of action in vivo, like that of anti-IL-2R mAb generally, remains elusive. These studies were designed to define whether IL-2R+ T effector cells were actually eliminated or their function merely inhibited by comparing directly the in vitro and in vivo efficacy of intact ART-18 and its F(ab)/F(ab')2 fragments. Addition of each mAb preparation profoundly suppressed MLR set up between naive LEW responders and x-radiated BN stimulators, suggesting that mAb fragments retained Ag binding functions in vitro. However, both ART-18 F(ab) and F(ab')2 were ineffectual in vivo as judged by their inability to affect acute (8 days) rejection of (LEW X BN)F1 cardiac allografts in LEW recipients (graft survival ca. 11 and 9 days, respectively, compared to ca. 21 days after therapy with intact ART-18, p less than 0.001). The sera levels of ART-18 and ART-18 F(ab')2 were 4 to 5 micrograms/ml, but only less than 0.5 micrograms/ml of F(ab) could be detected. The therapeutic failure of ART-18 fragments was unrelated to potential host sensitization, as rat antimouse F(ab) or F(ab')2 serum IgG titers remained in the same range as those against intact ART-18. The role of the Fc portion of Ig in the mode of action of ART-18 was then tested further by flow microfluorimetry analysis of host mononuclear spleen cells and immunoperoxidase stains of the graft infiltrate. IL-2R+ cells were abundant in rats treated with ART-18 fragments, comparable to acutely rejecting controls. In contrast, IL-2R expression was abolished in animals undergoing ART-18 therapy. The elimination of IL-2R+ cells is required to prolong cardiac allograft survival in rats after IL-2R targeted treatment with ART-18 mAb.  相似文献   

8.
The CD66 Ag is a neutrophil-specific "activation Ag" in that it is detected in low density on resting cells but its surface expression is up-regulated by stimulation (with the chemotactic peptide FMLP, the calcium ionophore A23187, and 12-O-tetradeconoyl-phorbol-13-acetate). Phosphorylation is an important mechanism of regulation of protein function. Although most studies of protein phosphorylation have focused on intracellular reactions, recent studies have provided evidence for the existence of ectoprotein kinase activity on the surface of several types of cells including human neutrophils. The role of ectoprotein kinase activity in cell function is unknown and little is known about the endogenous substrates of this enzyme system. The identification and characterization of physiologic substrates of ectoprotein kinase activity should aid the understanding of the role of this enzyme activity in cell function. Immunoprecipitation and subsequent gel electrophoresis of proteins from neutrophils labeled with [gamma-32P]ATP revealed that CD66 mAb specifically recognize a approximately 180-kDa phosphoprotein on the surface of human neutrophils. This protein was one of the major endogenous substrates for human neutrophil ectoprotein kinase activity. Phosphoamino acid analysis of the 180-kDa protein revealed that it contained predominantly phosphotyrosine. Preclearing studies demonstrated that this protein was also recognized by CD15 mAb, and by polyclonal anticarcinoembryonic Ag antiserum. In addition, the CD66 mAb reacted with purified carcinoembryonic Ag, biliary glycoprotein, and "nonspecific cross-reacting Ag." Thus, the neutrophil protein recognized by CD66 mAb appears to be a approximately 180-kDa form of the classical "nonspecific cross-reacting Ag" on human neutrophils.  相似文献   

9.
10.
CD157 is a GPI-anchored cell surface glycoprotein expressed by human peripheral blood neutrophils. Cross-linking of CD157 induces intracellular Ca2+ mobilization and re-shaping in neutrophils, thus regulating their adhesive and migratory properties. Results obtained by immunolocalization and confocal microscopy indicate that CD157 lies in close proximity to the CD11b/CD18 complex which is strongly expressed on the activated neutrophil cell membrane where it plays a predominant role in adhesion. This study analyses the physical association between CD157 and CD18 in human neutrophils by co-immunoprecipitation experiments. The anti-CD157 monoclonal antibody RF3 co-precipitates CD18, and the anti-CD18 antibody TS1/18 co-precipitates CD157 from human neutrophil lysates. These results confirm that CD157 physically interacts with CD11b/CD18 complex in human neutrophils.  相似文献   

11.
Proliferative T cell responses were elicited in a comitogenic assay when purified mAb against CD 18, CD11a, LFA-3, and CD7 were immobilized onto solid plastic surfaces together with submitogenic doses of mAb against the CD3 complex. The proliferative response was associated to the production of IL-2 and to the expression of IL-2R. We explored the possibility that a second signal provided by either PMA or a Ca2+ ionofore could replace the anti-CD3 mAb in the comitogenic assay. Interestingly, our data clearly indicate that PMA but not the ionofore was capable of mediating the co-mitogenic effect in conjunction with solid-bound mAb (CDw18, CD11a, LFA-3, and CD7). We also demonstrate that the mAb (anti-CD4 and anti-CD2) which have been previously described as co-mitogenic in combination with anti-CD3 are capable of eliciting this activating signal in the presence of PMA. These data indicate that mAb to certain cell surface differentiation Ag that in soluble form inhibit T cell function such as LFA-1, LFA-3, and CD2 can under appropriate conditions induce co-mitogenic signals on T cells. Our results support the hypothesis that several cell surface differentiation Ag may participate in conjunction with the T3-Ti complex in the transmembrane signal transduction leading to T cell activation.  相似文献   

12.
The glycosylphosphatidylinositol (GPI)-anchored neutrophil-specific receptor NB1 (CD177) presents the autoantigen proteinase 3 (PR3) on the membrane of a neutrophil subset. PR3-ANCA-activated neutrophils participate in small-vessel vasculitis. Since NB1 lacks an intracellular domain, we characterized components of the NB1 signaling complex that are pivotal for neutrophil activation. PR3-ANCA resulted in degranulation and superoxide production in the mNB1(pos)/PR3(high) neutrophils, but not in the mNB1(neg)/PR3(low) subset, whereas MPO-ANCA and fMLP caused similar responses. The NB1 signaling complex that was precipitated from plasma membranes contained the transmembrane receptor Mac-1 (CD11b/CD18) as shown by MS/MS analysis and immunoblotting. NB1 co-precipitation was less for CD11a and not detectable for CD11c. NB1 showed direct protein-protein interactions with both CD11b and CD11a by surface plasmon resonance analysis (SPR). However, when these integrins were presented as heterodimeric transmembrane proteins on transfected cells, only CD11b/CD18 (Mac-1)-transfected cells adhered to immobilized NB1 protein. This adhesion was inhibited by mAb against NB1, CD11b, and CD18. NB1, PR3, and Mac-1 were located within lipid rafts. In addition, confocal microscopy showed the strongest NB1 co-localization with CD11b and CD18 on the neutrophil. Stimulation with NB1-activating mAb triggered degranulation and superoxide production in mNB1(pos)/mPR3(high) neutrophils, and this effect was reduced using blocking antibodies to CD11b. CD11b blockade also inhibited PR3-ANCA-induced neutrophil activation, even when β2-integrin ligand-dependent signals were omitted. We establish the pivotal role of the NB1-Mac-1 receptor interaction for PR3-ANCA-mediated neutrophil activation.  相似文献   

13.
14.
We have recently developed a mAb, anti-1F7, which defines a family of structures found to include the molecule recognized by anti-Ta1 (CD26). In this paper, we demonstrated that binding of 1F7 by solid-phase immobilized anti-1F7 mAb but not anti-Ta1 mAb has a comitogenic effect by inducing proliferation of human CD4+ T lymphocytes in conjunction with submitogenic doses of anti-CD3 or anti-CD2. The proliferative response induced via the CD3-1F7 or CD2-1F7 pathways is associated with the IL-2 autocrine pathway, including IL-2 production. IL-2R expression and anti-IL-2R (Tac) inhibition. Furthermore, solid-phase immobilization of anti-1F7 but not anti-Ta1 acts in conjunction with submitogenic doses of PMA to mediate a comitogenic effect in the absence of anti-CD3 or anti-CD2, leading to CD4+ T cell proliferation. PMA treatment, in the meantime, leads to enhanced expression of 1F7 on the T cell surface. Despite its functional association with both pathways of activation, however, the 1F7 structure is not comodulated with the CD3/TCR complex nor the CD2 molecule. These findings thus suggest that the CD26 Ag is involved in CD3 and CD2-induced human CD4+ T cell activation.  相似文献   

15.
CD44 contributes to T cell activation   总被引:43,自引:0,他引:43  
We demonstrate here that the CD44 molecule, which mediates lymphocyte adhesion to high endothelial venules (HEV), is also involved in the delivery of an activation signal to the T cell. We have produced a CD44 mAb (H90) which is able to block the binding of lymphocytes to high endothelial venules. H90 had no effect on [3H]TdR incorporation of whole PBL stimulated by lectins, allogeneic cells, or CD3 mAb in the soluble phase; in contrast, it strongly increased [3H]TdR incorporation of PBL stimulated by CD2 pairs of mAb or by CD3 mAb linked to the plastic culture plates, when purified T cells were used, H90 mAb could efficiently induce them to proliferate after a primary signal of activation delivered via cross-linked CD3 or via CD2, an effect mediated by Il-2 synthesis and Il-2R expression. Thus, the effect of H90 mAb resembles the mitogenic effect of CD28 "9.3" mAb. However, several results show that CD28 and CD44 mediate different signals to the T cells: i) in contrast to CD28 mAb, CD44 mAb cannot complement the signal delivered by a soluble CD3 mAb, lectins, or PMA; ii) CD44 mAb, at the difference of CD28 mAb, cannot induce CD3+ thymocytes to proliferate in conjunction with a first signal provided via cross-linked CD3 or via CD2; iii) F(ab) fragments of H90 were efficient, whereas divalent fragments of CD29 9.3 mAb are required to produce activation signals; and iv) CD44 and CD28 mAb produce a very strong synergistic effect on T cell proliferation. These results fit with previous ones showing that endothelial cells can play the role of accessory cell in T cell activation and that a hierarchy of signaling can be delivered to T cells via CD3 and CD2.  相似文献   

16.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

17.
A mouse mAb, which recognized a rat T cell surface Ag responsible for the T cell activation, was produced by a regular hybridoma method using F344 rat T cells stimulated with PMA and a calcium ionophore, as the Ag. The mAb termed 1F4 (kappa-IgM) was reactive with rat T cells but not with B cells and immunohistochemically it stained rat thymus tissues strongly at medulla and weakly rat cortex. Addition of 1F4 mAb to a culture of T cells resulted in the proliferation of T cells by a help of PMA or a solid support. 1F4 mAb also caused the modulation of the corresponding Ag but not other T cell markers such as CD5, CD2, and OX-52-defined Ag. The 1F4 mAb immunoprecipitated a cell surface component having an apparent m.w. of 25,000 from rat T cells which could be associated with a disulfide-linked heterodimer (m.w. 92,000) consists of subunits having m.w. of about 52,000 and 43,000. These results strongly suggest that the 1F4 mAb recognizes a rat T cell Ag homologous to the human and mouse CD3.  相似文献   

18.
Four members of the carcinoembryonic Ag family, CD66a, CD66b, CD66c, and CD66d, are expressed on human neutrophils. CD66a, CD66b, CD66c, and CD66d Ab binding to the neutrophil surface triggers an activation signal that regulates the adhesive activity of CD11/CD18, resulting in an increase in neutrophil adhesion to HUVEC. To identify active sites on the CD66a Ag, molecular modeling was performed using IgG and CD4 as models, and 28 peptides of 14 aa in length were synthesized that were predicted to be present at loops and turns between beta-sheets. The peptides were tested for their ability to alter neutrophil adhesion to HUVEC. Three peptides, each from the N-terminal domain, increased neutrophil adhesion to HUVEC monolayers. This increase in neutrophil adhesion caused by CD66a peptides was associated with up-regulation of CD11/CD18 and down-regulation of CD62L on the neutrophil surface. Scrambled versions of these three peptides had no effect on neutrophil adhesion to the endothelial cells. The data suggest that peptide motifs from at least three regions of the N-terminal domain of CD66a are involved in the interaction of CD66a with other ligands and can initiate signal transduction in neutrophils.  相似文献   

19.
Human neutrophils exposed to protein-coated polystyrene or cultured endothelial monolayers produce large quantities of H2O2 in response to soluble stimuli that elicit little or no secretion of reactive oxygen species from cells in suspension. To characterize the mechanisms involved in this adherence-dependent respiratory burst, we have investigated the possible role of one integrin known to participate in the adhesion of neutrophils to endothelial cells, CD11b/CD18 (Mac-1). H2O2 production was examined with chemotactic factor-stimulated human and canine neutrophils exposed to protein-coated surfaces and cultured human and canine endothelial cells. The two protein-coated surfaces used were type I collagen-coated glass or plastic, a surface to which neither human nor canine neutrophils adhered, and keyhole limpet hemocyanin (KLH)-coated glass or plastic, a surface to which human and canine neutrophils adhered only after chemotactic stimulation. FMLP-stimulated human neutrophils and platelet activating factor-stimulated canine neutrophils failed to produce detectable H2O2 when in contact with type I collagen, but secreted large amounts of H2O2 when adherent to KLH or endothelial cell monolayers. FMLP-stimulated neutrophils from patients with CD18-deficiency failed to adhere to any of these surfaces and failed to produce H2O2 under these conditions. mAb reactive with CD18 and CD11b were equally effective in markedly inhibiting the adhesion of normal human neutrophils to these surfaces and markedly inhibited the production of H2O2. A mAb reactive with CD18 blocked adhesion of stimulated canine neutrophils, and mAb directed against both CD18 and CD11b blocked H2O2 production by canine neutrophils on KLH and endothelium. A nonbinding mAb and a mAb reactive with CD11a did not inhibit H2O2 production of human cells on KLH or endothelial monolayers, and nonbinding and binding control mAb did not inhibit H2O2 production by canine neutrophils. These results indicate that Mac-1 (CD11b/CD18) can mediate adhesion-dependent H2O2 production by human and canine neutrophils exposed to chemotactic factors.  相似文献   

20.
Neutrophils isolated from a child with severe leukocyte adhesion deficiency 1 (LAD1) had a complete absence of expression of the CD11/CD18 beta2 integrin family of adhesion molecules, and were shown to be deficient in the in vitro adhesion and migration properties. However, we found that interleukin-8 (IL8), a potent chemoattractant for neutrophils, and sputum sol phase induced these LAD1 neutrophils to migrate through an endothelial cell layer in vitro, and confirmed that this migration was CD18-independent. These findings add to evidence of CD18-independent mechanisms of neutrophil recruitment, in particular neutrophil infiltration into the lungs, where IL8 may be an important recruitment factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号