首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin dynamics are implicated in various cellular processes, not only through the regulation of cytoskeletal organization, but also via the control of gene expression. In the present study we show that the Src family kinase substrate p130Cas (Cas is Crk-associated substrate) influences actin remodelling and concomitant muscle-specific gene expression, thereby regulating myogenic differentiation. In C2C12 myoblasts, silencing of p130Cas expression by RNA interference impaired F-actin (filamentous actin) formation and nuclear localization of the SRF (serum-response factor) co-activator MAL (megakaryocytic acute leukaemia) following the induction of myogenic differentiation. Consequently, formation of multinucleated myotubes was abolished. Re-introduction of wild-type p130Cas, but not its phosphorylation-defective mutant, into p130Cas-knockdown myoblasts restored F-actin assembly, MAL nuclear localization and myotube formation. Depletion of the adhesion molecule integrin β3, a key regulator of myogenic differentiation as well as actin cytoskeletal organization, attenuated p130Cas phosphorylation and MAL nuclear localization during C2C12 differentiation. Moreover, knockdown of p130Cas led to the activation of the F-actin-severing protein cofilin. The introduction of a dominant-negative mutant of cofilin into p130Cas-knockdown myoblasts restored muscle-specific gene expression and myotube formation. The results of the present study suggest that p130Cas phosphorylation, mediated by integrin β3, facilitates cofilin inactivation and promotes myogenic differentiation through modulating actin cytoskeleton remodelling.  相似文献   

2.
3.
The limb musculature arises by delamination of premyogenic cells from the lateral dermomyotome. Initially the cells express Pax3 but, upon entering the limb bud, they switch on the expression of MyoD and Myf5 and undergo terminal differentiation into slow or fast fibres, which have distinct contractile properties that determine how a muscle will function. In the chick, the premyogenic cells express the Wnt antagonist Sfrp2, which is downregulated as the cells differentiate, suggesting that Wnts might regulate myogenic differentiation. Here, we have investigated the role of Wnt signalling during myogenic differentiation in the developing chick wing bud by gain- and loss-of-function studies in vitro and in vivo. We show that Wnt signalling changes the number of fast and/or slow fibres. For example, in vivo, Wnt11 decreases and increases the number of slow and fast fibres, respectively, whereas overexpression of Wnt5a or a dominant-negative Wnt11 protein have the opposite effect. The latter shows that endogenous Wnt11 signalling determines the number of fast and slow myocytes. The distinct effects of Wnt5a and Wnt11 are consistent with their different expression patterns, which correlate with the ultimate distribution of slow and fast fibres in the wing. Overexpression of activated calmodulin kinase II mimics the effect of Wnt5a, suggesting that it uses this pathway. Finally, we show that overexpression of the Wnt antagonist Sfrp2 and DeltaLef1 reduces the number of myocytes. In Sfrp2-infected limbs, the number of Pax3 expressing cells was increased, suggesting that Sfrp2 blocks myogenic differentiation. Therefore, Wnt signalling modulates both the number of terminally differentiated myogenic cells and the intricate slow/fast patterning of the limb musculature.  相似文献   

4.
In the present study, we investigated the functional interaction between stress fibers (SFs) and stretch-activated channels (SACs) and its possible role in the regulation of myoblast differentiation induced by switch to differentiation culture in the presence or absence of sphingosine 1-phosphate. It was found that there was a clear temporal correlation between SF formation and SAC activation in differentiating C2C12 myoblasts. Inhibition of actin polymerization with the specific Rho kinase inhibitor Y-27632, significantly decreased SAC sensitivity in these cells, suggesting a role for Rho-dependent actin remodeling in the regulation of the channel opening. The alteration of cytoskeletal/SAC functional correlation had also deleterious effects on myogenic differentiation of C2C12 cells as judged by combined confocal immunofluorescence, biochemical and electrophysiological analyses. Indeed, the treatment with Y-27632 or with DHCB, an actin disrupting agent, inhibited the expression of the myogenic markers (myogenin and sarcomeric proteins) and myoblast-myotube transition. The treatment with the channel blocker, GdCl(3), also affected myogenesis in these cells. It impaired, in fact, myoblast phenotypic maturation (i.e., reduced the expression of alpha-sarcomeric actin and skeletal myosin and the activity of creatine kinase) but did not modify promoter activity and protein expression levels of myogenin. The results of this study, together with being in agreement with the general idea that cytoskeletal remodeling is essential for muscle differentiation, describe a novel pathway whereby the formation of SFs and their contraction, generate a mechanical tension to the plasma membrane, activate SACs and trigger Ca(2+)-dependent signals, thus influencing the phenotypic maturation of myoblasts.  相似文献   

5.
Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation   总被引:39,自引:0,他引:39       下载免费PDF全文
While the transmembrane protein Notch plays an important role in various aspects of development, and diseases including tumors and neurological disorders, the intracellular pathway of mammalian Notch remains very elusive. To understand the intracellular pathway of mammalian Notch, the role of the bHLH genes Hes1 and Hes5 (mammalian hairy and Enhancer-of-split homologues) was examined by retrovirally misexpressing the constitutively active form of Notch (caNotch) in neural precursor cells prepared from wild-type, Hes1-null, Hes5-null and Hes1-Hes5 double-null mouse embryos. We found that caNotch, which induced the endogenous Hes1 and Hes5 expression, inhibited neuronal differentiation in the wild-type, Hes1-null and Hes5-null background, but not in the Hes1-Hes5 double-null background. These results demonstrate that Hes1 and Hes5 are essential Notch effectors in regulation of mammalian neuronal differentiation.  相似文献   

6.
7.
Nobel Prize in Medicine (2001) awarded to Leland H. Hartwell, R. Timothy Hunt, Sir Paul M. Nurse  相似文献   

8.
9.
Transforming growth factor beta (TGF) is a well-known inhibitor of myogenic differentiation as well as an autocrine product of rhabdomyosarcoma cells. We studied the role of the TGF-beta autocrine loop in regulating growth and myogenic differentiation in the human rhabdomyosarcoma cell line, RD. We previously reported that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induces growth arrest and myogenic differentiation in these cells, which constitutively express muscle regulatory factors. We show that TPA inhibits the activation of secreted latent TGF-beta, thus decreasing the concentration of active TGF-beta to which the cells are exposed. This event is mediated by the TPA-induced alteration of the uPA/PAI serine-protease system. Complete removal of TGF-beta, mediated by the ectopic expression of a soluble type II TGF-beta receptor dominant negative cDNA, induces growth arrest, but does not trigger differentiation. In contrast, a reduction in the TGF-beta concentration, to a range of 0.14-0.20 x 10(-2) ng/ml (which is similar to that measured in TPA-treated cells), mimics TPA-induced differentiation. Taken together, these data demonstrate that cell growth and suppression of differentiation in rhabdomyosarcoma cells require overproduction of active TGF-beta; furthermore, they show that a 'critical' concentration of TGF-beta is necessary for myogenic differentiation to occur, whereas myogenesis is abolished below and above this concentration. By impairing the TGF-beta autocrine loop, TPA stabilizes the factor concentration within the range compatible for differentiation to occur. In contrast, in human primary muscle cells a much higher concentration of exogenous TGF-beta is required for the differentiation inhibitory effect and TPA inhibits differentiation in these cells probably through a TGF-beta independent mechanism. These data thus clarify the mechanism underlying the multiple roles of TGF-beta in the regulation of both the transformed and differentiated phenotype.  相似文献   

10.
GATA6 regulates differentiation of distal lung epithelium   总被引:8,自引:0,他引:8  
  相似文献   

11.
12.
Regulation of skeletal muscle development requires many of the regulatory networks that are fundamental to developmental myogenesis. ErbB3 binding protein‐1 (Ebp1) is involved in the control of myoblasts development in chicken. However, the expression and biological functions of Ebp1 in the progress of myogenesis are unclear. This study focused on determining the effect of Ebp1 on myogenic proliferation and differentiation using a primary myoblasts culture model. Ebp1 was found to upregulate in proliferating myoblasts and decrease at the early stage of myogenic differentiation. The level of endogenous Ebp1 increased from E9 to E20 chicken leg muscles. Knockdown of Ebp1 had no effect on myoblasts proliferation. However, myogenic differentiation into multinucleated myotubes was significantly reduced. The mRNA and protein expression of MRFs was decreased when Ebp1 was knocked down. Downregulation of Ebp1, accompanied by elevated levels of pSMAD2/3, suggests that Ebp1 is involved in regulating myogenic differentiation via SMAD2/3 inhibition. The phosphorylation of SMAD2/3 was activated and the expression of MYOD and MYOG was reduced in Ebp1 knockdown myoblasts, but addition of LY2109761 (an inhibitor specified to SMAD2/3) blocked these effects. Collectively, these results indicate that Ebp1 promotes myoblast differentiation by inhibition of SMAD2/3 signaling pathway during chicken myogenesis. These data provide new insights into the biological role of Ebp1 in embryonic chicken skeletal muscle development.  相似文献   

13.
Inhibition of type 4 cAMP-specific phosphodiesterase (PDE4) activity in L6-C5 and L6-E9 abolished myogenic differentiation induced by low-serum medium and IGF-I. L6-C5 cells cultured in low-serum medium displayed a PDE4 activity higher than cells cultured in serum-free medium, a condition not sufficient to induce differentiation. In the presence of serum, PDE4D3, the major isoform natively expressed in L6-C5 cells, translocated to a Triton-insoluble fraction, which increased the PDE specific activity of the fraction, and exhibited a Mr shift typical of phosphorylation of this isoform. Furthermore, serum promoted the localization of PDE4D3 to a vesicular subcellular compartment. In L6-C5 cells, IGF-I is a stronger inducer of myogenic differentiation in the presence than in absence of serum. Its ability to trigger differentiation in the absence of serum was restored by overexpressing wild-type PDE4D3, but not a phosphorylation-insensitive mutant. This finding was confirmed in single cells overexpressing a GFP-PDE4D3 fusion protein by assessing nuclear accumulation of myogenin in both L6-C5 and L6-E9. Overexpression of other PDE isoforms was less efficient, confirming that PDE4D3 is the physiologically relevant phosphodiesterase isoform in the control of myogenesis. These results show that downregulation of cAMP signaling through cAMP-phosphodiesterase stimulation is a prerequisite for induction of myogenesis.  相似文献   

14.
TPA, a potent PKC activator, inhibits myogenic differentiation and activates phospholipase D (PLD). We evaluated the involvement of PLD in the TPA effects on L6 myoblasts differentiation. TPA, at concentrations inhibiting differentiation of L6 cells, induced a strong, though transient, PLD activation. Surprisingly, at nanomolar concentration, TPA induced both myogenic differentiation and sustained activation of PLD. Differential effect of TPA can be ascribed to PKC downregulation induced by highest TPA concentrations. TPA-induced differentiation was inhibited by 1-butanol, confirming the involvement of PLD in this effect. These data suggest that prolonged elevation of PLD activity is required for myogenic differentiation.  相似文献   

15.
We could recently demonstrate an important role of receptor interacting protein-2 (RIP2), an activator of nuclear factor kappa B (NF-κB) and a target of activated receptors of the tumor necrosis factor receptor (TNFR) type, in myogenic differentiation and regeneration. Here, we analyze a potential role of TNFR associated factor 6 (TRAF6), which also associates with the cytoplasmic domain of TNFR type, but also IL-1-R and TLR type receptors, and activates NF-κB, in these processes. Specifically, we show that during myogenic differentiation in vitro, traf6 gene expression is downregulated in normal myoblasts, but not in rhabdomyosarcoma cells, suggesting a role of the TRAF6 protein in this process. Inhibition of traf6 expression using specific siRNAs led to an inhibition of both myoblast proliferation and differentiation, whereas inhibition of the TRAF6 effector NF-κB alone in our system only blocked proliferation. Finally, we demonstrate that the traf6 gene is downregulated in skeletal muscle tissue of the dystrophic mdx mouse. Taken together, these data argue for a role of TRAF6 in the regulation of skeletal muscle differentiation and regeneration.  相似文献   

16.
17.
How phospholipase D (PLD) is involved in myogenesis remains unclear. At the onset of myogenic differentiation of L6 cells induced by the PLD agonist vasopressin in the absence of serum, mTORC1 complex was rapidly activated, as reflected by phosphorylation of S6 kinase1 (S6K1). Both the long (p85) and short (p70) S6K1 isoforms were phosphorylated in a PLD1-dependent way. Short rapamycin treatment specifically inhibiting mTORC1 suppressed p70 but not p85 phosphorylation, suggesting that p85 might be directly activated by phosphatidic acid. Vasopressin stimulation also induced phosphorylation of Akt on Ser-473 through PLD1-dependent activation of mTORC2 complex. In this model of myogenesis, mTORC2 had a positive role mostly unrelated to Akt activation, whereas mTORC1 had a negative role, associated with S6K1-induced Rictor phosphorylation. The PLD requirement for differentiation can thus be attributed to its ability to trigger via mTORC2 activation the phosphorylation of an effector that could be PKCα. Moreover, PLD is involved in a counter-regulation loop expected to limit the response. This study thus brings new insights in the intricate way PLD and mTOR cooperate to control myogenesis.  相似文献   

18.
19.
BB creatine kinase and myogenic differentiation   总被引:1,自引:0,他引:1  
Abstract. Antisera specific for the B monomer of creatine kinase (B-CK), the M monomer of creatine kinase (M-CK), and muscle-specific myosin heavy chain (MHC) were used to investigate the biochemical characteristics of individual cells in primary myogenic cultures. Through the use of immunocytochemical techniques, in conjunction with 3H-thy-midine autoradiography, it was determined that (1) all of the terminally differentiated myoblasts contained B-CK in addition to M-CK and MHC, (2) none of the cycling cells contained M-CK or MHC, (3) a fraction (7.5%) of the cycling cells contained B-CK, and (4) the cycling, B-CK positive cells divided once, and only once, and produced two terminally differentiated myoblasts. These results indicate that myogenic precursors in vitro are a phenotypically heterogeneous cell population and that the appearance of B-CK in cycling myogenic cells is a biochemical manifestation of a distinct precursor compartment in the chicken skeletal myogenic lineage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号