首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this experiment was to determine the possible relationship between certain indices of lipid metabolism and specific gene expression in chickens fed graded levels of dietary crude protein. Male, broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 21 or 30% protein ad libitum. In addition, another group of birds was fed on a regimen consisting of a daily change in the dietary protein level (12 or 30%). This latter group was further subdivided such that one-half of the birds received each level of protein on alternating days. Birds were sampled from 28 to 30 days of age. Measurements taken included in vitro lipogenesis, malic enzyme activity the expression of the genes for malic enzyme, fatty acid synthase and acetyl coenzyme carboxylase. In vitro lipogenesis and malic enzyme activity were inversely related to dietary protein levels (12-30%) and to acute changes from 12 to 30%. In contrast, expression of malic enzyme, fatty acid synthase and acetyl CoA carboxylase genes were constant over a dietary protein range of 12-21%, but decreased by feeding a 30% protein diet (acute or chronic feeding). Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. It should be pointed out, however, that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

2.
This experiment was conducted to determine possible relationships between certain indices of lipid metabolism and specific gene expression in chickens fed graded levels of dietary crude protein. Male, broiler chickens (Gallus gallus) growing from 7 to 28days of age were fed diets containing 12 or 30% protein ad libitum. Both groups were then switched to the diets containing the opposite level of protein. Birds were sampled at 0, 6, 9, 12, 18 and 24h following the switch in protein levels. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME), aspartate aminotransferase (AAT) and isocitrate dehydrogenase (NADP) (ICD) activities. In addition, ME, AAT, ICD, fatty acid synthase (FAS), and acetyl coenzyme carboxylase (ACC) gene expression rates were determined. IVL and ME activities were inversely related to dietary protein levels (12 to 30%) and to acute changes from 12 to 30%. In contrast, expression of ME, FAS and ACC genes was decreased by feeding a 30% protein diet (acute or chronic feeding). Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. It should be pointed out; however, that metabolic regulation at the gene level only occurs when feeding very high or very low levels of dietary protein.  相似文献   

3.
Hubbard x Hubbard chickens (Gallus gallus) growing from 7 to 28 days of age were fed 12 or 30% protein diets and then switched to the diets containing the opposite level of protein. Birds were killed on days 28, 29, 30 and 31. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME), isocitrate dehydrogenase (ICD) and aspartate aminotransferase (AAT) activities and the expression of the genes for ME, fatty acid synthase (FAS) and acetyl coenzyme carboxylase (ACC). Gene expression was determined with a combined RT-PCR using SYBR green as a fluorescent probe monitored in a real time mode. IVL and ME activity were inversely related to dietary protein levels (12 to 30%) and to acute changes in either level. In contrast, both ICD and AAT activities were increased by any increase in dietary protein. Lipogenic gene expression was inversely related to protein level, whether fed on an acute or chronic basis. It appears that real time RT-PCR is an acceptable method of estimating gene expression in birds. In addition, further work will focus on primer sizes that might further optimize RT-PCR as an instrument for studying the regulation of avian lipid metabolism. Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. However, it should be pointed out that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

4.
The purpose of this experiment was to determine the possible relationship between certain indices of lipid metabolism and specific gene expression in chickens fed methimazole to simulate hypothyroidism. Male broiler chickens (Gallus gallus) growing from 7 to 28 days of age were fed diets containing 18% crude protein and either 0 or 1 g methimazole per kilogram of diet. At 28 days, these two groups were further subdivided into groups receiving 18% crude protein diets containing either 0 or 1 mg triiodothyronine (T3) per kilogram. Birds were sampled at 28, 30, and 33 days. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME) activity, isocitrate dehydrogenase, aspartate amino transferase, and the expression of the genes for ME, fatty acid synthase (FAS), and acetyl coenzyme carboxylase (ACC). Hypothyroidism decreased IVL and ME at 28 days of age; however, T3 supplementation for 2 days restored both IVL and ME. Paradoxically, continuing T3 replenishment for an additional 3 days decreased IVL but did not decrease ME activity. In contrast, supplemental T3 decreased IVL in euthyroid birds, regardless of the dosing interval, but had no effect on ME activity. Although methimazole decreased ME gene expression, there was only a transitory relationship between enzyme activity and gene expression when plasma T3 was restored with exogenous T3. These data may help to explain some of the apparent reported dichotomies in lipid metabolism elicited by changes in the thyroid state of animals. In addition, most metabolic changes in response to feeding T3 occurred within 2 to 5 days, suggesting that changes in intermediary metabolism preceded morphological changes. In conclusion, the thyroid state of the animal will determine responses to exogenous T3.  相似文献   

5.
The purpose of this experiment was to determine the relationship between lipid metabolism and the expression of specific genes in chickens fed methimazole to produce hypothyroidism. Male, broiler chickens growing from 14 to 28 days of age were fed diets containing 18% crude protein and either 0 or 1 g methimazole per kg of diet. At 28 days, these two groups were further subdivided into groups receiving 18% crude protein diets containing either 0 or 1 mg triiodothyronine (T(3)) per kg. Birds were sampled at intervals from 0 to 120 h. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME), isocitrate dehydrogenase (ICD-NADP), aspartate aminotransferase (AAT) activities and the expression of the genes for ME, fatty acid synthase (FAS), NADP-ICD, AAT and acetyl coenzyme carboxylase (ACC). Gene expression was estimated with real time RT-PCR assays. Expression rates were noted as C(t)'s. Dietary methimazole decreased IVL and ME at 28 days of age. T(3) and supplementation for 1 day restored both IVL and ME. Paradoxically, continuing T(3) replenishment for a longer period decreased IVL without affecting ME activity. Although methimazole decreased ME gene expression, there was only a transitory relationship between enzyme activity and gene expression when plasma T(3) was replenished with exogenous T(3). These data explain the apparent dichotomies in lipid metabolism elicited by changes in the thyroid state of animals. Most metabolic changes in response to feeding T(3) occurred within a short period of time, suggesting that changes in intermediary metabolism preceded morphological changes. Furthermore, the thyroid state of the animal will determine responses to exogenous T(3).  相似文献   

6.
Levan or high molecular beta-2,6-linked fructose polymer is produced extracellularly from sucrose-based substrates by bacterial levansucrase. In the present study, to investigate the effect of levan feeding on serum leptin, hepatic lipogenic enzyme and peroxisome proliferation-activated receptor (PPAR) alpha expression in high-fat diet-induced obese rats, 4-week-old Sprague-Dawley male rats were fed high-fat diet (beef tallow, 40% of calories as fat), and, 6 weeks later, the rats were fed 0%, 1%, 5% or 10% levan-supplemented diets for 4 weeks. Serum leptin and insulin level were dose dependently reduced in levan-supplemented diet-fed rats. The mRNA expressions of hepatic fatty acid synthase and acetyl CoA carboxylase, which are the key enzymes in fatty acid synthesis, were down-regulated by dietary levan. However, dietary levan did not affect the gene expression of hepatic malic enzyme, phosphatidate phosphohydrolase and HMG CoA reductase. Also, the lipogenic enzyme gene expression in the white adipose tissue (WAT) was not affected by the diet treatments. However, hepatic PPARalpha mRNA expression was dose dependently up-regulated by dietary levan, whereas PPARgamma in the WAT was not changed. The results suggest that the in vivo hypolipidemic effect of dietary levan, including anti-obesity and lipid-lowering, may result from the inhibition of lipogenesis and stimulation of lipolysis, accompanied with regulation of hepatic lipogenic enzyme and PPARalpha gene expression.  相似文献   

7.
The study was undertaken to evaluate the effects of dietary protein sources on lipogenesis and fat deposition in a marine teleost, the European seabass (Dicentrarchus labrax). Four isonitrogenous (crude protein (CP, Nx6.25), 44% DM) and isoenergetic (22-23 kJ/g DM) diets were formulated to contain one of the following as the major protein source: fish meal (FM), one of two soy protein concentrates (SPC) and corn gluten meal (CGM). Apparent digestibility coefficients of the diets and raw ingredients, as well as soluble nitrogen (ammonia and urea) and phosphorus excretion were measured. Growth rates of seabass fed plant protein-based diets were significantly lower than those fed fish meal based diet. The protein utilisation was strongly correlated to the dietary essential amino acids index. Measurements of N excretion (ammonia and urea nitrogen) confirmed these data. Daily fat gain at the whole body level ranged between 1.1 to 1.7 g/kg BW, with the highest values being recorded in fish fed the fish meal based diet. Levels of plasma triglycerides and cholesterol were lower in fish fed soy protein diets than in those fed the diet solely based on fish meal. Soy protein rich diets decreased the activities of selected hepatic lipogenic enzymes (glucose 6-phosphate dehydrogenase, malic enzyme, ATP-citrate lysase, acetylcoenzyme A carboxylase and fatty acid synthetase). Highest lipogenic enzyme activities where found in fish fed the fish meal diet, except for fatty acid synthetase which was increased in seabass fed the corn-gluten meal based diets. Overall data suggest that dietary protein sources affects fat deposition and the lipogenic potential in European seabass.  相似文献   

8.
To study the role of sterol regulatory element-binding proteins (SREBP) in lipogenesis and cholesterol synthesis in the chicken, two experiments were carried out. In the first study, seven-week-old broilers (n = 16) were allocated into 2 groups, fasted for 24 h or refed for 5 h after a 24 h fasting. The mRNA concentrations for SREBPs and other lipogenic genes in the liver were determined by quantitative real time PCR. The hepatic mRNA relative abundance of lipogenic genes and genes involved in cholesterol synthesis were significantly greater (p < 0.001) in the refed broilers. Similar results were demonstrated with Northern analysis. The data suggest that in the liver of fasted broilers, genes associated with lipogenesis and cholesterol biosynthesis were inhibited. Indeed, the mRNA concentrations for fatty acid synthase (FAS), malic enzyme, and stearoyl coenzyme A desaturase were almost undetectable after the 24 h fasting. The data also demonstrated that the expression of lipogenic genes coordinate well as a group during the refeeding period. Second, three small interfering RNA (siRNA) oligonucleotides against SREBP1 were designed to be used in transfecting a chicken hepatocarcinoma cell line LMH. One of the three siRNAs effectively reduced SREBP1 mRNA concentration (p < 0.01). The acetyl coenzyme A carboxylaseα (ACCα) mRNA was also significantly reduced by the SREBP1 siRNA treatment, suggesting that SREBP1 can upregulate the expression of this lipogenic gene. This siRNA, however, did not affect the mRNA for FAS. Taken together, the RNA interference study showed that SREBP1 has the ability to regulate the expression of ACCα. This study has helped us understand more about the function of SREBP1 and the physiology of the broiler chickens.  相似文献   

9.
The effects of corticosterone (CORT) administration on the development of muscular tissues of broiler chickens (Gallus gallus domesticus) fed with diets differing in lipid content were investigated. The experimental chickens were given one of two experimental diets: high lipid diet (9.9% crude fat) or control diet, from 21 d of age. At 28 d of age, half of the chickens in each dietary treatment were exposed to CORT treatment, supplemented with 30 mg CORT/kg diet for 12 days, while the other half continued to consume the former diet. The zootechnical parameters were recorded at 21, 28, 35 and 39 d, and a blood sample was obtained from 8 birds of each group, respectively. The growth performance of broiler chickens was significantly depressed by CORT administration, but not by dietary treatment. Corticosterone treatment resulted in enhanced energy expenditure. The results indicate that the development of breast muscle was more susceptible to stress mimicked by CORT administration. The results suggest that corticosterone administration enhanced hepatic fatty acid synthesis and resulted in the redistribution of energy to abdominal store from peripheral tissues. Diet rich in lipid content was favorable to the central fat deposit in stressed broiler chickens.  相似文献   

10.
This study was performed to determine the effects of dietary perilla oil, a n-3 alpha-linolenic acid (ALA) source, on hepatic lipogenesis as a possible mechanism of lowering triacylglycerol (TG) levels. Male Sprague-Dawley rats were trained for a 3-hour feeding protocol and fed one of five semipurified diets as follows: 1% (w/w) corn oil control diet, or one of four diets supplemented with 10% each of beef tallow, corn oil, perilla oil, and fish oil. Two separate experiments were performed to compare the effects of feeding periods, 4 weeks and 4 days. Hepatic and plasma TG levels were decreased in rats fed perilla oil and fish oil diets, compared with corn oil and beef tallow diets. The activities of hepatic lipogenic enzymes such as fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase, and malic enzyme were suppressed in the fish oil, perilla oil, and corn oil-fed groups, and the effect was the most significant in the fish oil-fed group. Also, the activities of glycolytic enzymes, glucokinase, and L-pyruvate kinase showed the similar trend as that of lipogenic enzymes. The activity of FAS, the key regulatory enzyme in lipogenesis, was positively correlated with hepatic and plasma TG levels and reduced significantly in the perilla oil-fed group compared with corn oil-fed group. In addition, the FAS activity was negatively correlated with the hepatic microsomal content of EPA and DHA. In conclusion, suppression of FAS plays a significant role in the hypolipidemic effects observed in rats fed ALA rich perilla oil and these effects were associated with the increase of hepatic microsomal EPA and DHA contents.  相似文献   

11.
By feeding a carbohydrate diet (without protein) to fasted rats, malic enzyme mRNA activity in the liver was increased to the level in rats fed a carbohydrate and protein diet, whereas the enzyme activity itself was increased to 60% of that level. It appears that malic enzyme mRNA activity was increased by dietary carbohydrate, while dietary protein contributed to an increase in the translation of mRNA. In the animals fed carbohydrate without protein, glucose-6-phosphate dehydrogenase mRNA activity increased to 50% of the level in rats fed the carbohydrate and protein diet, whereas the enzyme activity increased to only 25%. By feeding a protein diet (without carbohydrate), glucose-6-phosphate dehydrogenase activity increased to 65% of the level in rats fed both carbohydrate and protein. This enzyme induction appears to be more dependent on protein than carbohydrate. With the carbohydrate diet, acetyl-CoA carboxylase was induced up to the level in the carbohydrate and protein diet group, whereas fatty acid synthetase was induced to only 33%. Acetyl-CoA carboxylase induction appears to be carbohydrate dependent. On the other hand, isotopic leucine incorporation studies showed that the magnitudes of the enzyme inductions caused by the dietary nutrients should be ascribed to the enzyme synthesis rates rather than the degradation. By fat feeding, the mRNA activities of malic enzyme and glucose-6-phosphate dehydrogenase were markedly decreased along with the enzyme induction. Fat appears to reduce these enzyme inductions before the translation of mRNA.  相似文献   

12.
We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.  相似文献   

13.
We determined the effect of dietary protein on the distribution of insulin-like growth factor (IGF) binding proteins in chicken plasma. Three groups of male broilers (n=6 per group) were fed (ad libitum) isocaloric diets containing 12, 21 or 30% dietary protein. Birds were fed respective diets beginning at 7 days of age and killed at 28 days. No differences were observed between adequate (21%) and high (30%) protein intakes for any of the parameters investigated (growth criteria, plasma levels of IGF-I, growth hormone or IGF-binding proteins). Feeding protein deficient diets (12%) resulted in a 34% decrease in body weight, 17% decrease in feed intake and a 39% increase in feed/gain ratio. IGF-binding proteins in plasma samples were separated by SDS-PAGE and transferred to nitrocellulose sheets. Nitrocellulose blots were probed with [125I]chicken IGF-II. Four regions of binding activity corresponding to 70, 43, 30 and 24 kDa were observed in all samples. Birds consuming 12% dietary group protein had less than 50% of the 43-kDa binding activity of birds consuming 21 or 30% dietary protein. The 30-kDa binding activity was 42% lower in the 12% dietary protein group compared to birds consuming adequate protein. In contrast, 70- and 24-kDa binding activities were not influenced by dietary protein. Chickens consuming 12% dietary protein had higher levels of growth hormone and lower levels of IGF-I than those consuming 21 or 30% dietary protein. These data indicate that in chickens, the circulating levels of at least two independent IGF-binding proteins are influenced by dietary protein.  相似文献   

14.
1. Ross male broiler chicks growing from 14 to 28 days of age were fed 14 and 20% protein diets (4 kcal day-1/body wt0.66) or 20 and 28% protein diets (2.8 kcal day-1/body wt0.66) in a 2 x 2 factorial arrangement to determine the effects of protein and energy intakes on in vitro lipogenesis (IVL) and net glucose production (NGP). Plasma concentrations of insulin, glucagon, thyroid hormones (T3 and T4) and somatomedin-C (Sm-C) were estimated by radioimmunoassay. 2. There was a significant (P less than 0.05) decrease in IVL in the chicks given the higher daily protein intake. 3. The higher protein intake increased (P less than 0.05) NGP while the lower energy intake decreased (P less than 0.05) NGP. 4. Insulin, both thyroid hormones and Sm-C were affected by dietary energy and protein intakes.  相似文献   

15.
The physiological mechanisms of thermogenesis, energy balance and energy expenditure are poorly understood in poultry. The aim of this study was designed to investigate the physiological roles of avian uncoupling protein (avUCP) regulating in energy balance and thermogenesis by using three chicken breeds of existence striking genetic difference and feeding with different dietary protein levels. Three chicken breeds including broilers, hybrid chickens, and non-selection Wuding chickens were used in this study. Total 150 chicks of 1 day of age, with 50 from each breed were reared under standard conditions on starter diets to 30 days. At 30 days of age, forty chicks from each breed chicks were divided into two groups. One group was fed low protein diet (LP, 17.0 %), and the other group was fed high protein diet (HP, 19.5 %) for 60 days. Wuding chickens showed the lowest feed conversion efficiency (FCE) and the highest expressions of avUCP mRNA association with high plasma T3 and insulin concentrations. Hybrid chickens showed the lowest expressions of avUCP mRNA association with high FCE and energy efficiency. Expressions of avUCP mRNA association with diet-induced thermogenesis (DIT) were only observed in broiler and hybrid chickens. The expressions of avUCP mRNA were positive association with plasma insulin, T3 and NEFA concentrations. Age influence on the expression of avUCP mRNA were observed only for hybrid and broiler chickens. It seems that both roles of avUCP regulation thermogenesis and lipid utilisation as fuel were observed in the present study response to variation in dietary protein and breeds.  相似文献   

16.
17.
The objective of this experiment was to determine the effect of polyunsaturated fatty acids on gene expression for fatty acid synthase, acetyl CoA-carboxylase, malic enzyme, pyruvate kinase, and phosphoenolpyruvate carboxykinase in obese mice. Eight-week-old female lean and obese mice were fed semi-purified diets containing 20% (w/w) fat of either high or low polyunsaturated to saturated (P/S) fatty acid ratio for four weeks. Total RNA was isolated from liver and was hybridized to cDNA probes for the above enzymes. Consumption of a high P/S diet decreased mRNA levels for all the lipogenic enzymes studied in both lean and obese mice. Compared to lean mice, obese mice exhibited a higher mRNA level for fatty acid synthase, acetyl CoA-carboxylase, malic enzyme, and pyruvate kinase in animals fed either a high or low P/S diet. Enzyme-specific activities followed the same profile as the mRNA levels in both lean and obese mice fed a high or low P/S diet. The decrease in liver fatty acid synthase mRNA level was more pronounced in lean mice compared to obese mice, suggesting that the obese mice may be more resistant to polyunsaturated fatty acid feedback control of gene expression.  相似文献   

18.
The responses of rat hepatic and brown adipose tissue in vivo lipogenesis to premature (15 days) and normal (21 days) weaning have been correlated to changes in the activities of acetyl-CoA carboxylase and two NADPH-producing enzymes, malic enzyme and glucose-6-phosphate dehydrogenase. Both tissues show an induction of lipogenesis in response to weaning. In the liver, lipogenic flux is closely linked to the activity of acetyl-CoA carboxylase, but not necessarily that of malic enzyme or glucose-6-phosphate dehydrogenase, whereas no such dissociation between enzyme activity and flux rate occurs in brown adipose tissue. Thyroid hormones, implicated in many physiological changes around weaning, do not seem to play a primary role in the adaptation of lipogenesis to the dietary change at this time, although a permissive role in both tissues is possible.  相似文献   

19.
Two experiments were conducted to determine the effect of enzyme supplementation on the nitrogen-corrected apparent metabolisable energy (AMEn) and apparent nutrient digestibilities in ileum and excreta from male broiler chickens fed diets containing high amounts of wheat (>80%). Four different enzyme preparations were added to the wheat-based diets in varying levels and combinations. The difference between Experiments 1 and 2 consisted in the addition of different enzymes and enzyme levels. Excreta and ileal content were collected from broiler chickens at 3 and 6 weeks of age. At 3 weeks of age enzyme supplementation increased (P<0.0001) the AMEn from an average value of 13.86 MJ kg−1 dry matter (DM) to an average of 14.60 MJ kg−1 DM in the two experiments. The apparent digestibility of protein (APD) and fat (AFD) were improved significantly as a result of enzyme addition in both experiments. At 3 weeks of age, improvements (P<0.05) in the ileal AFD and APD were on average 13% and 6%, respectively. The effect of enzyme supplementation on AFD measured in excreta from broiler chickens showed the same pattern. The positive effect of enzyme addition on the overall nutrient digestibility and AMEn was reflected in weight gain and feed conversion efficiency (FCE). Significant improvements in AMEn, APD, and AFD were still present in most of the groups fed with enzyme-supplemented diets at 6 weeks of age. The effect of enzyme addition, however, was less pronounced, especially in Experiment 1 where the ileal APD of broiler chickens did not differ significantly from the control group. Apparent starch digestibility (ASD), measured in Experiment 2, was very high in all groups, including the control; however, enzyme supplementation increased ASD (P<0.001) in ileum and excreta at both 3 and 6 weeks of age. The digestibility of total non-starch polysaccharides (NSP) in excreta was improved significantly (P<0.01) as a result of enzyme supplementation (Experiment 2). In addition, pH of caeca content decreased (P<0.02) in broiler chickens fed with enzyme-supplemented diets when compared with the control group. Decreased pH could indicate microbial fermentation of unabsorbed NSP residues and nitrogenous compounds. Overall, the results demonstrated that the nutritive value of wheat-based diets to broiler chickens improve enzyme supplementation. The apparent digestibility of total NSP and of arabinose and xylose residues improved (P<0.02) in the enzyme-supplemented diets indicating that the enzymes were able to break down the cell wall NSP to a certain extent.  相似文献   

20.
The activities of glucose 6-phosphate dehydrogenase (EC 1.1.1.49), malic enzyme (EC 1.1.1.40), ATP-citrate lyase (EC 4.1.3.8), acetyl-CoA carboxylase (EC 6.4.1.2) and fatty acid synthetase were lower (-25 to -60%) in liver of rats fed during 45 days with a moderate long-chain triglycerides (LCT) content diet (32% of metabolizable energy, ME), than in control rats fed with a low fat diet (LCT, 10% of ME). However, the fall in malic enzyme activity was not significant. In contrast, these activities were higher (+40 to +160%) in rats fed with a diet with a moderate medium-chain triglycerides (MCT) content (32% of ME), than in control rats. Nevertheless, the increase in activity of malic enzyme and ATP-citrate lyase was more important. Contrary to LCTs, MCTs had no inhibitory effect on the activity of enzymes involved in hepatic lipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号