首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate whether the response of hematopoietic cells to interleukin-17 (IL-17) depends on the tissue microenvironment in which hematopoiesis occurs, the influence of recombinant mouse IL-17 on spleen hematopoietic cells and cytokine release was assessed in normal mice in vitro and in vivo. In vitro, IL-17 did not significantly affect the growth of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E and CFU-E) derived colonies. A single injection of IL-17 in vivo exhibited stimulatory effects on hematopoietic cells from both granulocytic and erythroid lineages. The increased number of metamyelocytes 48 h after treatment imply to the IL-17-induced stimulation of granulopoiesis. The number of BFU-E was increased at 24 h, while the number of CFU-E increased 6 h and 24 h after treatment. Since the same treatment in the bone marrow decreased the number of CFU-E, it may be concluded that the local microenvironment plays an important role in IL-17-mediated effects on CFU-E. IL-17 increased the release of IL-6 both in vitro and in vivo, but showed tendency to suppress the constitutive secretion of IL-10 by spleen cells. Our results suggest the complexity of target cell response and interplay of secondary induced cytokines by IL-17 in different hematopoietic organs.  相似文献   

2.
To determine the role of Thy-1 antigen in murine hematopoietic differentiation, bone marrow was treated with anti-Thy-1.2 antibody and complement or complement alone. Growth of immature hematopoietic progenitors, erythroid burst-forming units (BFU-E), and granulocyte/macrophage colony-forming units (CFU-GM) was greatly reduced following antibody and complement treatment and was not restored by mitogen-stimulated spleen cell supernatants. In contrast, more mature erythroid and myeloid progenitors, the erythroid colony-forming unit (CFU-E) and the macrophage progenitor stimulated by L-cell-conditioned media (LCM), were spared by anti-Thy-1.2 antibody and complement treatment. Here, to separate the effects of anti-Thy-1.2 antibody treatment on accessory cells from those on progenitors, splenic T cells and thymocytes were added to treated marrow at ratios of up to 200%. Growth of BFU-E and CFU-GM was not restored. To more precisely replace required accessory cells, male complement-treated marrow was cocultured with female anti-Thy-1.2 antibody and complement-treated marrow. Even marrow cells failed to restore female BFU-E and CFU-GM growth. Fluorescent-activated cell sorting (FACS) and immune sheep red cell rosetting with anti-Thy-1.2-labeled marrow were then performed to determine if immature hematopoietic progenitors bear Thy-1.2. These techniques revealed enrichment of BFU-E and CFU-GM in the Thy-1.2-positive fraction, demonstrating the presence of Thy-1.2 on early murine hematopoietic progenitors. CFU-E and CFU-M were present in the Thy-1.2-negative fraction following FACS separation. These data demonstrate that Thy-1.2 is a differentiation antigen, present on at least some murine BFU-E and CFU-GM and lost as they mature to CFU-E and CFU-M.  相似文献   

3.
To determine the quantitative effects of iron deficiency on erythropoiesis and to assess the response of erythroid progenitors to sustained anemia, we developed quantitative assays for various hematopoietic progenitors in the adult, Sprague-Dawley rat including erythroid colony- and burst-forming cells (CFU-E and BFU-E), granulocyte/macrophage colony-forming cells (CFU-GM), and megakaryocytic colony-forming cells (CFU-Meg). CFU-E were cultured in methylcellulose and grew best in the presence of fetal calf serum. CFU-GM, BFU-E, and CFU-Meg grew better in normal rat plasma and required the presence of pokeweed mitogen-stimulated rat spleen cell conditioned medium. The numbers of progenitors and nucleated erythroblasts in total marrow were estimated by the ratios of radioactivity in the humerus to the total skeleton as determined by radioiron dilution. The numbers of progenitors and erythroblasts in the spleen were measured by simple dilution. Sustained anemia was brought about through chronic iron deficiency. The response to iron deficiency anemia (IDA) was monitored by the numbers of the various progenitors and their cell cycle characteristics as measured by the tritiated thymidine suicide technique. With IDA, the number of CFU-F in the body (marrow plus spleen) was increased to 3.5 times control, whereas the numbers of BFU-E and CFU-GM were unchanged. There was no difference in the percentage of CFU-E, BFU-E, and CFU-GM in DNA synthesis (68%, 19.4%, and 18.8%, respectively). With iron therapy of IDA, CFU-E numbers in marrow began to decrease by day 1 and fell in a manner reciprocal to changes in the hematocrit. Marrow and spleen erythroblasts, 1.7 times control in IDA, increased further to 3.9 times control by the fourth day after iron administration. There was no change in BFU-E or CFU-GM numbers in response to iron repletion, although the fraction of progenitors increased in the spleen. Thus, IDA does not limit the increase in CFU-E seen with anemia, but does restrict erythroid maturation. Furthermore, the increase in CFU-E and the state of chronic anemia occur without detectable changes in the number of cell cycle state of the more primitive BFU-E.  相似文献   

4.
Recent studies have shown that the T cell-derived cytokine, interleukin-17 (IL-17), stimulates hematopoiesis, specifically granulopoiesis inducing expansion of committed and immature progenitors in bone marrow. Our previous results pointed to its role in erythropoiesis too, demonstrating significant stimulation of BFU-E and suppression of CFU-E growth in the bone marrow from normal mice. As different sensitivities of erythroid and myeloid progenitor cells to nitric oxide (NO) were found, we considered the possibility that the observed effects of IL-17 were mediated by NO. The effects of recombinant mouse IL-17, NO donor (sodium nitroprusside - SNP) and two NO synthases inhibitors (L-NAME and aminoguanidine) on erythroid progenitor cells growth, as well as the ability of IL-17 to induce nitric oxide production in murine bone marrow cells, were examined. In addition, we tested whether the inhibition of CFU-E colony formation by IL-17 could be corrected by erythropoietin (Epo), the principal regulator of erythropoiesis. We demonstrated that IL-17 can stimulate low level production of NO in murine bone marrow cells. Exogenously added NO inhibited CFU-E colony formation, whereas both L-NAME and aminoguanidine reversed the CFU-E suppression by IL-17 in a dose-dependent manner. The inhibition of CFU-E by IL-17 was also corrected by exposure to higher levels of Epo. The data obtained demonstrated that at least some of the IL-17 effects in bone marrow related to the inhibition of CFU-E, were mediated by NO generation. The fact that Epo also overcomes the inhibitory effect of IL-17 on CFU-E suggests the need for further research on their mutual relationship and co-signalling.  相似文献   

5.
Li WM  Huang WQ  Huang YH  Jiang DZ  Wang QR 《Cytokine》2000,12(7):1017-1023
Recently, cytokines and interleukins such as SCF, GM-CSF, G-CSF, TGF-beta, IL-6, IL-7, IL-8, IL-11 have been reported to be elaborated by endothelial cells. For further study, serum free bone marrow endothelial cell conditioned medium (BMEC-CM) was collected and ultrafiltrated by using a centriprep 10. The concentrated retentate (R-BMEC-CM) contained some substances whose molecular weight was more than 10 000 daltons. The filtrate (F-BMEC-CM) contained some substances whose molecular weight was less than 10 000 daltons. The effects of R-BMEC-CM and F-BMEC-CM on the growth of haematopoietic progenitors and the expression of cytokine and interleukin mRNAs of BMEC were investigated. The results showed that R-BMEC-CM stimulated the growth of CFU-GM, HPP-CFC, BFU-E, CFU-E, and CFU-Meg; while F-BMEC-CM inhibited the growth of these progenitors. Using the method of hybridizing to the Atlas cDNA Array, we were able to detect the presence of mRNAs of cytokines and interleukins in bone marrow endothelial cells. Our finding of the existence of mRNAs of SCF, GM-CSF, IL-6, TGF-beta, IL-1, and IL-11 in these cells was in agreement with the data reported previously. Furthermore, we detected mRNAs of MIP-2, Thymosion-beta4, PDGF, MSP-1, IFN-gamma, IL-13 and inhibin, which are related to haematopoiesis. Among these cytokines and interleukins, SCF, GM-CSF, IL-6, IL-1, and IL-11 are haematopoietic stimulators which may be responsible for the stimulative effects on the growth of haematopoietic progenitors. One of our new findings, the thymosin-beta4, is a small molecular haematopoietic inhibitor. It may be responsible for the inhibitory effect of F-BMEC-CM on haematopoietic progenitors. The presence of mRNAs of BMP, MSP-1, MIP-2, PDGF and IL-13 suggests that bone marrow endothelial cells might elaborate these substances. Their influence on haematopoietic progenitors needs further study.  相似文献   

6.
Purified recombinant human (rhu) IL-1 alpha and IL-1 beta were evaluated for their effects on the proliferation and survival of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells from normal human bone marrow (BM). Using nonadherent low density T lymphocyte depleted (NALT-) BM cells cultured in the presence or absence of IL-1, CSF-deprivation studies demonstrated that IL-1 alpha or IL-1 beta by itself did not enhance the proliferation of CFU-GM or BFU-E. They did, however, promote the survival of progenitors responding to the delayed addition of media conditioned by the 5637 cell line (5637 conditioned medium), rhu GM-CSF and erythropoietin. The survival promoting effects of IL-1 alpha on CFU-GM and BFU-E were neutralized by anti-IL-1 alpha mAb added to the cultures. The survival promoting effect of IL-1 alpha did not appear to be mediated by CSF, because neither CSF nor erythroid burst promoting activity were detectable in cultures in which NALT- cells were incubated with rhuIL-1 alpha. In addition, suboptimal concentrations of rhu macrophage CSF (CSF-1), G-CSF, GM-CSF, and IL-3, which were just below the levels that would stimulate colony formation, did not enhance progenitor cell survival. Survival of CFU-GM and BFU-E in low density (LD) bone marrow cells did not decrease as drastically as that in NALT- BM cells, and exogenously added IL-1 did not enhance progenitor cell survival of CFU-GM and BFU-E in LD BM cells. However, addition of anti-IL-1 beta decreased survival of CFU-GM and BFU-E in LD BM cells. These results implicate IL-1 in the prolonged survival of human CFU-GM and BFU-E.  相似文献   

7.
Cats viremic with feline leukemia virus subgroup C (FeLV-C) develop pure red cell aplasia (PRCA) characterized by the loss of detectable late erythroid progenitors (CFU-E) in marrow culture. Normal numbers of early erythroid progenitors (BFU-E) and granulocyte-macrophage progenitors (CFU-GM) remain, suggesting that the maturation of BFU-E to CFU-E is impaired in vivo. We have examined the cell cycle kinetics of BFU-E and their response to hematopoietic growth factor(s) to better characterize erythropoiesis as anemia develops. Within 3 weeks of FeLV-C infection, yet 6-42 weeks before anemia, the traction of BFU-E in DNA synthesis as determined by tritiated thymidine suicide increased to 43 +/- 4% (normal 23 +/- 2%) while there was no change in the cell cycle kinetics of CFU-GM. In additional studies, we evaluated the response of marrow to the hematopoietic growth factor(s) present in medium conditioned by FeLV-infected feline embryonic fibroblasts (FEA/FeLV CM). With cells from normal cats or cats viremic with FeLV-C but not anemic, a 4-fold increase in erythroid bursts was seen in cultures with 5% FEA/FeLV CM when compared to cultures without CM. However, just prior to the onset of anemia, when the numbers of detectable CFU-E decreased, BFU-E no longer responded to FEA/FeLV CM in vitro. BFU-E from anemic cats also required 10% cat or human serum for optimal in vitro growth. These altered kinetics and in vitro growth characteristics may relate to the in vivo block of BFU-E differentiation and PRCA. Finally, when marrow from cats with PRCA was placed in suspension culture for 2 to 4 days in the presence of cat serum and CM, the numbers of BFU-E increased 2- to 4-fold although no CFU-E were generated. By 4 to 7 days, CFU-E were detected, suggesting that conditions contributing to the block of erythroid maturation did not persist. The suspension culture technique provides an approach to study further the defect in erythroid differentiation characteristic of feline PRCA.  相似文献   

8.
The effect of hyperthermia on hemopoietic progenitor cells of the mouse   总被引:1,自引:0,他引:1  
We have studied the effect of heat on four lineage-specific clonogenic cells from mouse bone marrow. The thermal sensitivities of two red cell precursors, one primitive (BFU-E) and one more differentiated (CFU-E), a granulocyte-macrophage precursor (CFU-GM), and a megakaryocyte precursor (CFU-M) were determined after exposure to 42, 43, and 44 degrees C. We found that the erythroid precursors were much more heat sensitive than either the CFU-GM or CFU-M. At 42 degrees C the CFU-E and BFU-E had a D0 of about 30 min, while the CFU-GM and CFU-M had D0 values of about 60 min. Thus the four progenitors could be divided into two distinct classes with respect to their sensitivity to hyperthermia. These results suggest that erythropoiesis is more likely to be suppressed than either thrombopoiesis or leukocyte production when hyperthermia is applied in a clinical setting.  相似文献   

9.
10.
Li WM  Huang YH  Jiang DZ  Wang QR 《生理学报》2000,52(1):45-49
应用小鼠骨髓内皮细胞株细胞传代培养,收集无血清条件培养液(mBMEC-CM),经超滤分成大于10kD和小于10kD两组分,分别观察两组分的mBMEC-CM对小鼠骨髓造血干/祖细胞CFU-GM,HPP-CFC,CFU-E,BFU-E和CFU-Meg的影响。结果表明:含分子量大于10kD物质的mBMEC-CM的保留液能明显刺激CFU-GM,HPP-CFC,CFU-E,BFU-E和CFU-Meg生长;  相似文献   

11.
On day 33 of gestation, foetal beagles were irradiated in utero (0.9 Gy of 60Co gamma-irradiation, 0.4 Gy/min). Foetal haematocytopoiesis was studied during the third trimester of gestation (days 42-55). Peripheral blood nucleated cell counts were 33 per cent lower than normal on day 44 and continued to be lower until day 49, when values became higher than normal. Splenic cellularities of irradiated pups on day 44 were more than 3 times those of the nonirradiated, but thereafter they were similar to normal. Differences in haemopoietic progenitor cell activity between irradiated and normal foetuses were observed. In comparison with the other foetal tissues, the foetal liver appeared to experience greater radiation injury. For example, on day 44, the irradiated liver BFU-E, CFU-E, and GM-CFC per 10(5) cells were almost fivefold lower than normal values. Spleens of irradiated foetal beagles contained a marked increase in all haemopoietic progenitor cells (BFU-E, CFU-E, and GM-CFC) and recognizable proliferative granulocytic cells and nucleated erythroid cells. The haemopoietic activity of the irradiated bone marrow during days 42-44 was similar to that of the irradiated spleen, and compensated for the damaged liver. However, unlike the irradiated spleen, the irradiated bone marrow had decreased BFU-E activity compared with the values for the nonirradiated bone marrow during days 48-55. Until day 50, the irradiated marrow contained fewer recognizable proliferative granulocytic cells but more nucleated erythroid cells.  相似文献   

12.
J P Kremer  T Datta  P D?rmer 《Blut》1986,52(3):179-183
A codominantly inherited mutation of the lactate dehydrogenase (LDH) in the C3H mouse causes a severe hemolytic anemia in homozygous mutants, whereas viability and fertility are close to normal. Investigation of multipotent hemopoietic stem cells (CFU-S), myeloid (GM-CFC) and erythroid progenitors (BFU-E, CFU-E) in femur and spleen indicates a general shift from bone marrow to splenic hemopoiesis. In terms of total body hemopoiesis, however, the BFU-E pool is 1.4- and the CFU-E pool 19-fold enlarged, whereas CFU-S and GM-CFC show little or no deviation from normal. It is concluded that this mouse mutant is an appropriate model of long-term hemopoietic stress showing that compensation in this severe hemolytic anemia is achieved primarily by an increase of the number of the most mature erythroid progenitors.  相似文献   

13.
We studied the long-term effect of continued zidovudine exposure in mice on hematopoiesis, as determined by peripheral blood indices, assays of erythroid (colony-forming unit-erythroid [CFU-E] and burst-forming unit-erythroid [BFU-E]), myeloid (CFU-granulocyte-macrophage [GM]), megakaryocyte (CFU-Meg), and plasma titers of erythropoietin, granulocyte-macrophage colony-stimulating factor, megakaryocyte colony-stimulating factor, and tumor necrosis factor-alpha. Dose-escalation of zidovudine (0.1, 1.0, and 2.5 mg/ml) induced a dose-dependent decrease in hematocrit, white blood cells, and platelets. High-dose drug, i.e., greater than 1.0 mg/ml, reduced marrow CFU-E; splenic CFU-E was increased after 1 week, then declined. BFU-E was increased at Weeks 1 and 2, then declined to control levels. Splenic BFU-E rose during the examination period that was dose-dependent. Femoral CFU-GM was cyclic, i.e., low-dose drug, 0.1 mg/ml, was increased gradually, the declined; higher doses of 1.0 and 2.5 mg/ml were lower until Week 5, then were above controls. Splenic CFU-GM was increased initially at Week 2 (1.0 mg/ml), then declined; the higher dose (2.5 mg/ml) increased initially, then declined below controls (Week 6). Femoral CFU-Meg was increased after low-dose drug and inhibited after high dose (2.5 mg/ml). Splenic CFU-Meg was reduced initially, followed by an increase at Week 4. Plasma titer of erythropoietin was elevated, proportional to dose escalation of drug, and inversely proportional to the hematocrit. No difference was observed in plasma levels of granulocyte-macrophage colony-stimulating factor, megakaryocyte colony-stimulating factor, or tumor necrosis factor-alpha. This study demonstrates that zidovudine-induced anemia results from: (i) inadequate numbers of bone marrow-derived, erythropoietin-dependent hematopoietic progenitors, i.e., CFU-E; and (ii) a shift in erythropoietin-responsive progenitors from bone marrow to spleen capable of responding to obligatory growth factors.  相似文献   

14.
Fetal cord blood's potential for bone marrow transplantation   总被引:1,自引:0,他引:1  
N Ende  P Rameshwar  M Ende 《Life sciences》1989,44(25):1987-1990
Approximately 18 years ago, the authors were able to produce an apparently successful bone marrow transplant by using umbilical cord blood. In view of the Chernobyl disaster and the subsequent problems of treatment with marrow transplantation, this study undertook to explore further the potential use of umbilical cord blood as a source of marrow cells. Specimens of umbilical cord blood were collected from 13 routine obstetrical deliveries. All specimens grew erythroid and granulocytic-monocytic colonies. The formation of these various hematopoietic colonies from umbilical cord blood was at least equivalent to bone marrow, and in some instances over 5 times more effective. There appeared to be a statistically significant correlation between the numbers of colony-forming units (CFU-E) and the male infants. The weight of the infants also showed a statistically significant correlation with the burst forming units, erythroid (BFU-E) and the granulocytic-monocytic colony (CFU-GM). The BFU-E also appeared to be greater in number when the time between collection and plating was shorter.  相似文献   

15.
This study was designed to determine the stage in haemopoietic cell differentiation from multipotential stem cells at which erythropoietin becomes physiologically important. The responses of haemopoietic precursor cells were monitored in the bone marrow of mice under conditions of high (after bleeding) and low (after hypertransfusion) ambient erythropoietin levels. The number of relatively mature erythroid precursors (CFU-E), detected by erythroid colony formation after 2 days of culture, increased three-fold in marrow by the fourth day after bleeding, and decreased three-fold after hypertransfusion. Assessed by sensitivity to killing by a brief exposure to tritiated thymidine (3H-TdR) in vitro, the proliferative activity of CFU-E was high (75% kill) in untreated and bled animals, and was slightly lower (60% kill) after hypertransfusion. The responses of more primitive erythroid progenitors (BFU-E), detected by erythroid colony formation after 10 days in culture, presented a contrasting pattern. After hypertransfusion they increased slightly, while little change was noted until the fourth day after bleeding, when they decreased in the marrow. The same response pattern was observed for the progenitors (CFU-C) detected by granulocyte/macrophage colony formation in culture. The sensitivity of BFU-E to 3H-TdR was normally 30%, and neither increased after bleeding nor decreased after hypertransfusion. However, in regenerating marrow the 3H-TdR sensitivity of BFU-E increased to 63%, and this increase was not affected by hypertransfusion. These results are interpreted as indicating (1) that physiological levels of erythropoietin do not influence the decision by multipotential haemopoietic stem cells to differentiate along the erythroid pathway as opposed to the granulocyte/macrophage pathway; (2) that early erythroid-committed progenitors themselves do not respond to these levels of erythropoietin, but rather are subject to regulation by erythropoietin-independent mechanisms; and (3) that physiological regulation by erythropoietin commences in cells at a stage of maturation intermediate between BFU-E and CFU-E.  相似文献   

16.
The course of the differentiation and proliferation of the human erythroid burst-forming units (BFU-E) to colony-forming units (CFU-E) was directly investigated using a combination of highly purified BFU-E, a liquid culture system, and the following clonal assay. Highly purified human blood BFU-E with a purity of 45-79% were cultured in liquid medium with recombinant human erythropoietin (rEP) and recombinant human interleukin-3 (rIL-3) to generate more differentiated erythroid progenitors. The cultured cells were collected daily for investigating the morphology, the increment in the number of cells and the clonality. Ninety percent of purified BFU-E required not only rEP but also rIL-3 for clonal development. By 7 days of liquid culture, the total cell number increased 237 +/- 20-fold above the starting cells, while erythroid progenitors increased 156 +/- 74-fold. As the incubation time in liquid culture increased, the cells continuously differentiated in morphology. Replating experiments with rEP combined with or without rIL-3 showed the following: 1) The number of erythroblasts that were part of erythroid colonies decreased with accompanying erythroid progenitor differentiation and proliferation. 2) As the incubation time in liquid culture increased, erythroid progenitors had a graded loss of their dependency on rIL-3 and a complete loss of dependency was observed after 3 days of liquid culture. At that time 85% of the erythroid progenitors gave rise to colonies of more than 100 erythroblasts which were equivalent to mature BFU-E. These studies provide a quantitative assessment of the loss of IL-3 dependency by BFU-E and indicate that the size of the generated erythroid colonies and their IL-3 requirement correlate with the erythroid differentiated state.  相似文献   

17.
G Van Zant  C G Fry 《Cytometry》1983,4(1):40-46
We have systematically studied the effect on hemopoietic colony-forming cells of staining cellular DNA with the bisbenzimidazole dye, Hoechst 33342. Mouse bone marrow cells could be adequately stained in a 30-60 min incubation with a 5 microM concentration of stain. Flow-cytometric analysis of stained cells provided cell distributions with coefficients of variation for the G1 peaks of 6% or less under these conditions. We found considerable heterogeneity among hemopoietic colony-forming cells with respect to the toxicity of the dye. Toxicity in the proliferatively quiescent stem cell population was not changed when the population became proliferatively active. In the sequence of most sensitive to least sensitive, the five progenitors studied could be arranged as follows: CFU-M, a megakaryocyte colony-forming cell; CFU-E, a relatively differentiated erythroid precursor; BFU-E, a primitive erythroid precursor; CFU-GM, a granulocyte-macrophage precursor; and CFU-S, the spleen colony-forming cell or hemopoietic stem cell. A staining procedure involving a 30-min exposure to 5 microM Hoechst 33342 provided optimal staining and no loss in four of the five progenitor populations; the CFU-M population was diminished by about 50%. We conclude that Hoechst can be regarded as a vital DNA stain for most bone marrow precursor populations, including the hemopoietic stem cell.  相似文献   

18.
The purpose of this study was to analyze the effects of recombinant human interleukin 4 (IL-4) on the differentiation and proliferation in vitro of human granulocyte/macrophage (GM) and erythroid progenitors. IL-4 was added to either fetal bovine serum (FBS)-supplemented or to FBS-deprived cultures of unfractionated human marrow cells or marrow cells depleted of adherent and/or T cells. Paradoxical effects similar to those reported in the murine system were detected in these experiments. In FBS-supplemented cultures, IL-4, which had no effect on the growth or erythroid bursts (from burst-forming cells; BFU-E) detected in the presence of Epo alone, decreased by 46% the number of erythroid bursts detected in the presence of Epo and phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). In contrast, in FBS-deprived cultures, IL-4 increased by 30-700% the number of erythroid bursts in cultures containing Epo alone or containing Epo, IL-3, and GM-CSF. The stimulatory effect of IL-4 on erythroid burst growth under FBS-deprived conditions was particularly evident when adherent cells were removed. Under the conditions investigated, IL-4 had little effect on the growth of GM colonies. In FBS-deprived suspension cultures of nonadherent, T-cell-depleted marrow cells, IL-4 maintained both the number of BFU-E and CFU-GM for at least 8 days. In these cultures, IL-4 antagonized the capacity of IL-3 to increase the number of BFU-E but IL-4 and IL-3 acted together to maintain the number of CFU-GM. To determine if IL-4 acted directly or indirectly, its effects on the growth of factor-dependent subclones of the murine progenitor cell line 32D were analyzed. Three subclones were studied: the original IL-3-dependent clone 32D cl.3, the Epo-dependent erythroid clone 32D Epo-1, and the G-CSF-dependent myeloid clone 32D G-1. IL-4 alone failed to induce colony growth from these cell lines. However, IL-4 inhibited by 25% the number of colonies formed by 32D cl.3 in the presence of IL-3 while increasing by 25% and 25-50% the number of colonies formed by 32D Epo-1 and 32D G-1 in the presence of Epo or G-CSF, respectively. These results indicate that human IL-4, as its murine counterpart, is a multilineage growth factor with paradoxical effects which are mediated by the direct action of IL-4 on progenitor cells.  相似文献   

19.
N Maruo  M Ozawa  M Kondo  S Fujita 《Histochemistry》1990,94(3):257-262
A new method has been developed for the precise identification of human bone marrow colony forming unit erythroid (CFU-E) and burst forming unit erythroid (BFU-E) colonies, and for determination of the hemoglobin contents using microcytofluorometry. The method relies on a photochemical reaction in which intracellular hemoglobin is converted into fluorescent porphyrin under violet light (lambda = 405 nm) in the presence of an SH-donor (mercaptoethylamine hydrochloride). The CFU-E and BFU-E colonies showed red fluorescence with two spectrum peaks at 600 and 650 nm when illuminated by violet light. These two peaks are consistent with those of porphyrin fluorescence. The porphyrin fluorescence was not inducible in colony forming unit granulocyte-macrophage (CFU-GM) colonies, while 20% of the CFU-GM colonies were false positive with respect to the conventional benzidine reaction. The photochemically inducible fluorescence began to appear in BFU-E colonies on the 4th day of culture, while the same colonies started to be positive for the benzidine reaction on the 9th day. Therefore, the photochemical reaction was more specific and sensitive than the benzidine reaction for the identification of CFU-E and BFU-E colonies. In addition, this method enabled us to measure the hemoglobin level in the cells forming the colonies because the intensity of the fluorescence was proportional to the amount of hemoglobin when the photochemical reaction was carried out for 50 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have recently demonstrated that transforming growth factor (TGF)-beta 1 and TGF-beta 2 are potent inhibitors of the growth and differentiation of murine and human hematopoietic cells. The proliferation of primary unfractionated murine bone marrow by interleukin-3 (IL-3) and human bone marrow by IL-3 or granulocyte/macrophage colony-stimulating factor (GM-CSF) was inhibited by TGF-beta 1 and TGF-beta 2, while the proliferation of murine bone marrow by GM-CSF or murine and human marrow with G-CSF was not inhibited. Mouse and human hematopoietic colony formation was differentially affected by TGF-beta 1. In particular, CFU-GM, CFU-GEMM, BFU-E, and HPP-CFC, the most immature colonies, were inhibited by TGF-beta 1, whereas the more differentiated unipotent CFU-G, CFU-M, and CFU-E were not affected. TGF-beta 1 inhibited IL-3-induced growth of murine leukemic cell lines within 24 h, after which the cells were still viable. Subsequent removal of the TGF-beta 1 results in the resumption of normal growth. TGF-beta 1 inhibited the growth of factor-dependent NFS-60 cells in a dose-dependent manner in response to IL-3, GM-CSF, G-CSF, CSF-1, IL-4, or IL-6. TGF-beta 1 inhibited the growth of a variety of murine and human myeloid leukemias, while erythroid and macrophage leukemias were insensitive. Lymphoid leukemias, whose normal cellular counterparts were markedly inhibited by TGF-beta, were also resistant to TGF-beta 1 inhibition. These leukemic cells have no detectable TGF-beta 1 receptors on their cell surface. Last, TGF-beta 1 directly inhibited the growth of isolated Thy-1-positive progenitor cells. Thus, TGF-beta may be an important modulator of normal and leukemic hematopoietic cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号