首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
This article presents the classification of blood characteristics by a C4.5 decision tree, a naïve Bayes classifier and a multilayer perceptron for thalassaemia screening. The aim is to classify eighteen classes of thalassaemia abnormality, which have a high prevalence in Thailand, and one control class by inspecting data characterised by a complete blood count (CBC) and haemoglobin typing. Two indices namely a haemoglobin concentration (HB) and a mean corpuscular volume (MCV) are the chosen CBC attributes. On the other hand, known types of haemoglobin from six ranges of retention time identified via high performance liquid chromatography (HPLC) are the chosen haemoglobin typing attributes. The stratified 10-fold cross-validation results indicate that the best classification performance with average accuracy of 93.23% (standard deviation = 1.67%) and 92.60% (standard deviation = 1.75%) is achieved when the naïve Bayes classifier and the multilayer perceptron are respectively applied to samples which have been pre-processed by attribute discretisation. The results also suggest that the HB attribute is redundant. Moreover, the achieved classification performance is significantly higher than that obtained using only haemoglobin typing attributes as classifier inputs. Subsequently, the naïve Bayes classifier and the multilayer perceptron are applied to an additional data set in a clinical trial which respectively results in accuracy of 99.39% and 99.71%. These results suggest that a combination of CBC and haemoglobin typing analysis with a naïve Bayes classifier or a multilayer perceptron is highly suitable for automatic thalassaemia screening.  相似文献   

2.
Effective innate and adaptive immune responses are essential for the control of hepatitis C virus (HCV) infection. Indeed, elimination of HCV during acute infection correlates with an early induction of innate and a delayed induction of adaptive immune responses. However, in the majority of acutely HCV-infected individuals, these responses are insufficient to clear the virus and persistence develops. In recent years, different mechanisms responsible for the failure of innate and adaptive immune responses have been identified. These include the proteolytic cleavage of molecules playing key roles in the induction of the interferon response, manipulation of interferon-induced effector proteins, interference with CD8+ T-cell function or immune escape in T- and B-cell epitopes. In this review, we discuss the possible roles of innate and adaptive immune responses in HCV clearance and the different evasion strategies used by the virus to escape these immune responses.  相似文献   

3.
In insects, melanotic encapsulation is an important innate immune response against large pathogens or parasites, and phenoloxidase (PO) is a key enzyme in this process. Activation of prophenoloxidase (proPO) to PO is mediated by a serine proteinase cascade. PO has a tendency to adhere to foreign surfaces including hemocyte surfaces. In this study, we showed that in the naïve larvae of the tobacco hornworm Manduca sexta, hemolymph proPO bound to the surface of granulocytes and spherule cells but not to oenocytoids, and about 10% hemocytes had proPO on their surfaces. When larvae were injected with water (injury) or microsphere beads (immune-challenge), hemolymph proPO was activated, and the number of hemocytes with surface proPO/PO increased at 12 h post-injection, but dropped to the normal level at 24 h. Hemocyte surface proPO can be activated in vitro, leading to melanization of these hemocytes. The number of melanized hemocytes from the larvae injected with water or microsphere beads significantly increased. We also showed that neither hemocytes nor cell-free plasma alone triggered melanization of immulectin-2-coated agarose beads in vitro. However, agarose beads were effectively melanized by isolated hemocytes in the presence of cell-free plasma. Our results suggest that activation of hemocyte surface proPO may initiate melanization, leading to the systemic melanization of hemocyte capsules.  相似文献   

4.
Vertebrates have evolved an adaptive immune system in addition to the ancestral innate immune system. It is often assumed that a trade-off between costs and benefits of defence governs the evolution of immunological defence, but the costs and benefits specific to the adaptive immune system are poorly known. We used genetically engineered mice lacking lymphocytes (i.e. mice without adaptive, but with innate, immunity) as a model of the ancestral state in the evolution of the vertebrate immune system. To investigate if the magnitude of adaptive defence is constrained by the energetic costs of producing lymphocytes etc., we compared the basal metabolic rate of normal and lymphocyte-deficient mice. We found that lymphocyte-deficient mice had a higher basal metabolic rate than normal mice with both innate and adaptive immune defence. This suggests that the evolution of the adaptive immune system has not been constrained by energetic costs. Rather, it should have been favoured by the energy savings associated with a combination of innate and adaptive immune defence.  相似文献   

5.
The antitumor effects of 1,25-dihydroxyvitamin D3 (calcitriol) are being exploited for prevention and treatment of prostate cancer (CaP). These studies examined the antiproliferative effects of calcitriol in primary cell cultures derived from transgenic adenocarcinoma of mouse prostate (TRAMP) mice chronically treated with calcitriol (20 μg/kg) or vehicle 3×/week from 4 weeks-of-age until palpable tumors developed. This is a report on the response of two representative control (Vitamin D naïve, naïve) and calcitriol-treated (Vitamin D insensitive, VDI) cells to calcitriol. VDI cells were less sensitive to calcitriol based on less cell growth inhibition and less inhibition of DNA synthesis as measured by MTT and BrdU incorporation assays. Similarly, VDI cells were less sensitive to growth inhibition by the vitamin analog, 19-nor-1,25-dihydroxyvitamin D2 (paricalcitol). There was no change in apoptosis following treatment of naïve and VDI cells with calcitriol. Vitamin D receptor (VDR) expression was up-regulated by calcitriol in both naïve and VDI cells. In addition, calcitriol induced the Vitamin D metabolizing enzyme, 24-hydroxylase (cyp24) mRNA and enzyme activity similarly in naïve and VDI cells as measured by RT-PCR and HPLC, respectively. In summary, VDI cells are less responsive to the antiproliferative effects of calcitriol. Understanding Vitamin D insensitivity will further clinical development of Vitamin D compounds for prevention and treatment of CaP.  相似文献   

6.

Background

Recombination activation gene 1 deficient (rag1−/−) mutant zebrafish have a reduced lymphocyte-like cell population that lacks functional B and T lymphocytes of the acquired immune system, but includes Natural Killer (NK)-like cells and Non-specific cytotoxic cells (NCC) of the innate immune system. The innate immune system is thought to lack the adaptive characteristics of an acquired immune system that provide enhanced protection to a second exposure of the same pathogen. It has been shown that NK cells have the ability to mediate adaptive immunity to chemical haptens and cytomegalovirus in murine models. In this study we evaluated the ability of rag1−/− mutant zebrafish to mount a protective response to the facultative intracellular fish bacterium Edwardsiella ictaluri.

Methodology/Principal Findings

Following secondary challenge with a lethal dose of homologous bacteria 4 and 8 weeks after a primary vaccination, rag1−/− mutant zebrafish demonstrated protective immunity. Heterologous bacterial exposures did not provide protection. Adoptive leukocyte transfers from previously exposed mutants conferred protective immunity to naïve mutants when exposed to homologous bacteria.

Conclusions/Significance

Our findings show that a component of the innate immune system mounted a response that provided significantly increased survival when rag1−/− mutant zebrafish were re-exposed to the same bacteria. Further, adoptive cell transfers demonstrated that kidney interstitial leukocytes from previously exposed rag1−/− mutant zebrafish transferred this protective immunity. This is the first report of any rag1−/− mutant vertebrate mounting a protective secondary immune response to a bacterial pathogen, and demonstrates that a type of zebrafish innate immune cell can mediate adaptive immunity in the absence of T and B cells.  相似文献   

7.
MOTIVATION: A major problem of pattern classification is estimation of the Bayes error when only small samples are available. One way to estimate the Bayes error is to design a classifier based on some classification rule applied to sample data, estimate the error of the designed classifier, and then use this estimate as an estimate of the Bayes error. Relative to the Bayes error, the expected error of the designed classifier is biased high, and this bias can be severe with small samples. RESULTS: This paper provides a correction for the bias by subtracting a term derived from the representation of the estimation error. It does so for Boolean classifiers, these being defined on binary features. Although the general theory applies to any Boolean classifier, a model is introduced to reduce the number of parameters. A key point is that the expected correction is conservative. Properties of the corrected estimate are studied via simulation. The correction applies to binary predictors because they are mathematically identical to Boolean classifiers. In this context the correction is adapted to the coefficient of determination, which has been used to measure nonlinear multivariate relations between genes and design genetic regulatory networks. An application using gene-expression data from a microarray experiment is provided on the website http://gspsnap.tamu.edu/smallsample/ (user:'smallsample', password:'smallsample)').  相似文献   

8.
Cytokines are involved in directing the activation of natural killer (NK) cells. NK cells are involved in the recognition of cells that have been altered; thus they do not recognize specific insults to the host, but when activated, are capable of destroying infected cells directly, as well as promoting the recruitment and response of the other components of the immune system by the release of cytokines and chemokines. It is these properties that have made NK cells a critical part of innate immunity and adaptive immunity, and they play a principal role linking innate and adaptive immunity by the recruitment of an adaptive immune response to an innate immune reaction.  相似文献   

9.
Uematsu S  Akira S 《Uirusu》2004,54(2):145-151
The immune system has been divided into innate and adaptive component, each of which has different roles and functions in defending the organism against foreign agents, such as bacteria and viruses. An important advance in our understanding of early events in microbial recognition and subsequent development of immune responses was the identification of Toll-like receptors (TLRs) as key molecules of the innate immune systems. The family of TLRs in vertebrates detects conserved structures found in a broad range of pathogens and triggers innate immune responses. At present, 11 members of the TLR family have been identified. A subset of TLRs recognize viral components and induce antiviral responses by producing type I interferons. Recent accumulating evidence has clarified signaling pathways triggered by TLRs in viral infection.  相似文献   

10.
《Cytokine》2015,76(2):249-255
Cytokines play crucial roles in coordinating the activities of innate and adaptive immune systems. In response to pathogen recognition, innate immune cells secrete cytokines that inform the adaptive immune system about the nature of the pathogen and instruct naïve T cells to differentiate into the appropriate T cell subtypes required to clear the infection. These include Interleukins, Interferons and other immune-regulatory cytokines that exhibit remarkable functional redundancy and pleiotropic effects. The focus of this review, however, is on the enigmatic Interleukin 12 (IL-12) family of cytokines. This family of cytokines plays crucial roles in shaping immune responses during antigen presentation and influence cell-fate decisions of differentiating naïve T cells. They also play essential roles in regulating functions of a variety of effector cells, making IL-12 family cytokines important therapeutic targets or agents in a number of inflammatory diseases, such as the CNS autoimmune diseases, uveitis and multiple sclerosis.  相似文献   

11.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

12.
13.
The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical “don't find me” signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the “don't eat me” signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using “Knobs-into-holes” technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors.  相似文献   

14.
15.
Toll样受体与树突状细胞介导的天然免疫和获得性免疫   总被引:1,自引:0,他引:1  
树突状细胞(dendritic cells,DCs)作为迄今所发现的抗原提呈功能最强的一类抗原提呈细胞,是联结天然免疫和获得性免疫的桥梁。Toll样受体(Toll-like receptors,TLRs)是一类进化保守的胚系编码的模式识别受体,在DCs的抗原识别、递呈及激活T细胞等方面具有重要作用,是机体受外来抗原入侵后作出适当免疫反应的调控点。现就TLRs在不同DCs亚群中的分布、与DCs介导的天然免疫和获得性免疫的关系及DCs功能可塑性的分子基础作一综述。  相似文献   

16.
In vertebrates, the immune system consists of two arms of different characteristics: the innate and the acquired immune response. Parasites that are only shortly exposed to the immune system are most efficiently attacked by fast, constitutive innate immune mechanisms. Here, we experimentally selected within four fish families for high innate resistance versus susceptibility of three-spined sticklebacks (Gasterosteus aculeatus) against infection with the eye-fluke (Diplostomum pseudospathacaeum), a parasite whose metacercariae are protected from the immune system within the eye lens. We predicted that in families with high susceptibility, the adaptive immune system would be upregulated when challenged with infection. In accordance, we found that MHC class IIB expression is increased by approximately 50% in those lines selected for higher parasite load (i.e. low innate response). This suggests extensive genetic correlations between innate and adaptive immune system and/or crosstalk between both lines of defense. An efficient, specific innate immune response might reduce overall activation of the immune system and potentially alleviate associated effects of immunopathology.  相似文献   

17.
于垚  何慧倩  吴梦雪  贾鑫明 《菌物学报》2020,39(11):2088-2108
念珠菌是一类最常见的人类机会性致病真菌,可导致致命的侵袭性念珠菌病,严重威胁人类生命与健康。深入了解念珠菌与宿主之间的相互作用,有助于为诊断、预防和治疗念珠菌病提供新的理论策略。本文综述了念珠菌与宿主相互作用的最新研究进展,概括了念珠菌的致病机制和宿主的免疫应答两方面内容,重点分析了念珠菌的形态转换、分泌型蛋白、模式识别受体以及介导的固有免疫和适应性免疫应答,并对未来念珠菌与宿主的研究方向进行了展望。  相似文献   

18.
Innate immunity has evolved as a first line defense against invading pathogens. Cellular and humoral elements of the innate immune system detect infectious parasites, initiate inflammatory resistance reactions and finally contribute to the elimination of the invaders. Repeated attacks by pathogenic agents induce adaptive responses of the innate immune system. Typically, reapplication of pathogens provokes tolerance of the affected organism. However, also stimulatory effects of primary infections on subsequent innate immune responses have been observed. The present overview touches an undervalued aspect in the innate immune response: Its pronounced dependency on pathogen load. In addition to localization and timing of innate immune responses the pathogen dose dependency might be considered as a “fifth dimension of innate immunity”. Experimental results and literature data are presented proposing a hormetic reaction pattern of innate immune cells depending on the dose of pathogens.  相似文献   

19.
Allergic asthma is an inflammatory lung disease thought to be initiated and directed by type 2 helper T cells responding to environmental Ags. The mechanisms by which allergens induce Th2-adaptive immune responses are not well understood, although it is now clear that innate immune signals are required to promote DC activation and Th2 sensitization to inhaled proteins. However, the effect of ongoing Th2 inflammation, as seen in chronic asthma, on naive lymphocyte activation has not been explored. It has been noted that patients with atopic disorders demonstrate an increased risk of developing sensitivities to new allergens. This suggests that signals from an adaptive immune response may facilitate sensitization to new Ags. We used a Th2-adoptive transfer murine model of asthma to identify a novel mechanism, termed "collateral priming," in which naive CD4(+) T cells are activated by adaptive rather than innate immune signals. Th2 priming to newly encountered Ags was dependent on the production of IL-4 by the transferred Th2 population but was independent of Toll-like receptor 4 signaling and the myeloid differentiation factor 88 Toll-like receptor signaling pathway. These results identify a novel mechanism of T cell priming in which an Ag-specific adaptive immune response initiates distinct Ag-specific T cell responses in the absence of classical innate immune system triggering signals.  相似文献   

20.
Bassity E  Clark TG 《PloS one》2012,7(3):e33196
Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号