首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic map of the Bacillus stearothermophilus NUB36 chromosome.   总被引:2,自引:2,他引:0       下载免费PDF全文
A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus stearothermophilus and Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyrA-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes in Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis.  相似文献   

2.
An efficient protoplast transformation system was established for Bacillus stearothermophilus NUB3621 using thermophilic plasmid pTHT15 Tcr (4.5 kb) and mesophilic plasmid pLW05 Cmr (3 kb), a spontaneous deletion derivative of pPL401 Cmr Kmr. The efficiency of transformation of NUB3621 with pLW05 and pTHT15 was 2 x 10(7) to 4 x 10(8) transformants per micrograms DNA. The transformation frequency (transformants per regenerant) was 0.5 to 1.0. Chloramphenicol-resistant and tetracycline-resistant transformants were obtained when competent cells of Bacillus subtilis were transformed with pLW05 [2.5 x 10(5) transformants (microgram DNA)-1] and pTHT15 [1.8 x 10(5) transformants (micrograms DNA)-1], respectively. Thus, these plasmids are shuttle vectors for mesophilic and thermophilic bacilli. Plasmid pLW05 Cmr was not stably maintained in cultures growing at temperatures between 50 and 65 degrees C but the thermostable chloramphenicol acetyltransferase was active in vivo at temperatures up to 70 degrees C. In contrast, thermophilic plasmid pTHT15 Tcr was stable in cultures growing at temperatures up to 60 degrees C but the tetracycline resistance protein was relatively thermolabile at higher temperatures. The estimated copy number of pLW05 in cells of NUB3621 growing at 50, 60, and 65 degrees C was 69, 18, and 1 per chromosome equivalent, respectively. The estimated copy number of pTHT15 in cells of NUB3621 growing at 50 or 60 degrees C was about 41 to 45 per chromosome equivalent and 12 in cells growing at 65 degrees C.  相似文献   

3.
4.
Protein synthesis in Bacillus stearothermophilus   总被引:8,自引:0,他引:8  
  相似文献   

5.
Teichoic acid synthesis in Bacillus stearothermophilus   总被引:3,自引:1,他引:2       下载免费PDF全文
1. Particulate enzyme preparations obtained from Bacillus stearothermophilus B65 by digestion with lysozyme were shown to catalyse teichoic acid synthesis. With CDP-glycerol as sole substrate the preparations synthesized 1,3-poly(glycerol phosphate). It was characterized by alkaline hydrolysis, by glucosylation to the alkali-stable 2-glucosyl-1,3-poly(glycerol phosphate) with excess of UDP-glucose and a Bacillus subtilis Marburg enzyme system, by degradation of this latter product with 60%HF and periodate oxidation of the resulting glucosylglycerol. The specificity of the B. subtilis system previously reported (Glaser & Burger, 1964), was confirmed in the present work. 2. Pulse-labelling experiments, followed by periodate oxidation of the product and isolation of formaldehyde from the glycerol terminus of the polymer, showed that the B. stearothermophilus enzyme system transferred glycerol phosphate units to the glycerol end of the chain. The transfer reaction was irreversible. It was not determined if these poly(glycerol phosphate) chains were synthesized de novo, but it was shown that the newly synthesized oligomers were bound to much larger molecules. 3. When the B. stearothermophilus enzyme system was supplied with both CDP-glycerol and UDP-glucose, 1-glucosyl-2,3-poly(glycerol phosphate) was synthesized in addition to the 1,3-isomer. The former polymer was characterized by acid and alkaline hydrolysis, degradation with HF and periodate oxidation of the resulting glucosylglycerol, and periodate oxidation of the intact polymer followed by mild acid hydrolysis. This latter procedure removed the glucose substituents without disrupting the poly(glycerol phosphate) chain. 4. The poly(glycerol phosphate) isomers were distinguished by glucosylation with the B. subtilis enzymes and alkaline hydrolysis, the 2,3-isomer remaining alkali-labile. The proportion of 2,3-poly(glycerol phosphate) in the product increased with increasing amounts of UDP-glucose in the incubation mixture, but the total glycerol phosphate incorporated into products remained constant. It is suggested that the synthetic pathways of the two poly(glycerol phosphate) species may share a rate-limiting step.  相似文献   

6.
The turnover of protein in a prototrophic strain of Bacillus stearothermophilus during exponential growth in a salts medium with glucose or succinate as carbon source was about 4 %/h and in a richer nutrient broth medium about 23 %/h. Protein degradation under non-growing conditions conformed to a similar pattern. The turnover of RNA (non-messenger) was about 1 %/h in salts medium and about 9 %/h in nutrient broth. The turnover of protein and RNA in the thermophile is thus moderate rather than massive. This conclusion was confirmed by measurement of the decay of a specific enzyme, isocitrate lyase, in the prototroph and of the overall protein turnover in a non-prototrophic strain of B. stearothermophilus. The half-lives of a number of enzyme systems in intact cells of the prototrophic thermophile at its optimum growth temperature showed some variation but indicated a significant rate of inactivation. Such decay of protein in vivo apparently accounts for the moderate protein turnover observed during growth.  相似文献   

7.
Temperate and virulent bacteriophages isolated from soil were shown to carry out generalized transduction of Bacillus stearothermophilus NUB36. A transducing frequency of 1 X 10(-5) to 7 X 10(-4) was obtained for temperate phages TP-42 and TP-56. The transducing frequency for virulent phage TP-68 was two to three orders of magnitude lower. Cotransfer analysis with the three phages showed that hom-1 is linked to thr-1 and that gly-1 is linked to his-1.  相似文献   

8.
9.
10.
The optimal culture conditions for Bacillus stearothermophilus NUB3621 (BGSC 9A5) in chemostat were studied. The results obtained showed that the optimal culture conditions in terms of biomass concentration and maximum growth rate were 65 degrees C, pH 6.8 to 7.2. Dissolved oxygen became growth limiting at pO(2) levels below 10%. Furthermore, this strain was transformed with three new hybrid vectors (pPAM2, pPCH2, or pPLY2) constructed by cloning in pRP9, a plasmid based on the thermophilic replicon, pBC1, and three heterologous genes: the alpha-amylase gene from Bacillus licheniformis, the cholesterol oxidase gene from Streptomyces sp., and the lipase gene from Pseudomonas fluorescens. The influence of several fermentative conditions on segregational and structural stability of the recombinant B. stearothermophilus NUB3621 transformants was studied.The parameters of plasmid loss, that is, rate of plasmid loss (R) and specific growth rate difference (deltamu), were calculated. B. stearothermophilus NUB3621 carrying pRP9 showed great segregational stability in all the assayed conditions, exceeding more than 300 generations without significant plasmid loss, whereas NUB3621 carrying pPAM2, pPCH2, or pPLY2 exhibited relatively low plasmid stability. The segregational instability of the recombinant constructs increased by increasing the fermentation temperature, decreased by increasing the dilution rate, and was not affected by the level of dissolved oxygen. On the other hand, plasmid maintenance decreased in minimal medium if compared with the results obtained in complex medium. Restriction analyses carried out on cultures of NUB3621 carrying pRP9, pPAM2, pPCH2, or pPLY2, grown for 200 generations on nonselective media, revealed that all the clones tested contained the parental plasmids. These results indicate that the heterologous inserts did not affect the structural stability of the recombinant plasmids. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 507-514, 1997.  相似文献   

11.
12.
Promoter and leader sequence of Bacillus stearothermophilus alpha-amylase gene were removed and the gene was joined in-frame to sequences encoding the leader region of Saccharomyces cerevisiae mating pheromone alpha-factor on plasmid p69A (a hybrid of pBR322 and S. cerevisiae 2-microns plasmid). S. cerevisiae cells were transformed with plasmids containing the hybrid genes, obtaining yeast transformants which exhibit a significant extra-cellular amylolytic activity in solid medium, but not in liquid medium. Levels of alpha-amylase activity in solid medium were found to depend on the mode of fusion of the alpha-amylase gene to the alpha-factor leader region.  相似文献   

13.
beta-Galactosidase from Bacillus stearothermophilus.   总被引:6,自引:0,他引:6  
Several strains of thermophilic aerobic spore-forming bacilli synthesize beta-galactosidase (EC 3.2.1.23) constitutively. The constitutivity is apparently not the result of a temperature-sensitive repressor. The beta-galactosidase from one strain, investigated in cell-free extracts, has a pH optimum between 6.0 and 6.4 and a very sharp pH dependence on the acid side of its optimum. The optimum temperature for this enzyme is 65 degrees C and the Arrhenius activation energy is about 24 kcal/mol below 47 degrees C and 16 kcal/mol above that temperature. At 55 degrees C the Km is 0.11 M for lactose and 9.8 X 10(-3) M for 9-nitrophenyl-beta-D-galactopyranoside. The enzyme is strongly product-inhibited by galactose (Ki equals 2.5 X 10(-3) M). It is relatively stable at 50 degrees C, losing only half of its activity after 20 days at this temperature. At 60 degrees C more than 60% of the activity is lost in 10 min. However, the enzyme is protected somewhat against thermal inactivation by protein, and in the presence of 4 mg/ml of bovine serum albumin the enzyme is only 18% inactivated in 10 min at 60 degrees C. Its molecular weight, estimated by disc gel electrophoresis, is 215 000.  相似文献   

14.
A new approach to enzymatic peptide synthesis by using aminoacyl-tRNA synthetase (ARS) as a catalyst has been investigated. Four ARSs (AspRS, HisRS, LeuRS and TyrRS) have been purified from a thermophilic bacterium, Bacillus stearothermophilus. By using TyrRS as a catalyst, tyrosine and leucinamide were shown to be condensed in the presence of ATP to give tyrosylleucinamide. In this manner, all of the ARSs investigated catalyzed the peptide synthesis reactions. TyrRS did not have strict specificity for the amino acid derivatives used as substrates and even D-amino acids were incorporated into peptides fairly easily in this enzymatic reaction. Preparative scale synthesis of L-Tyr-L-LeuNH2 was carried out and from this the scope and limitation of this new enzymatic reaction as a tool to the peptide synthesis has been described.  相似文献   

15.
16.
Spore production by Bacillus stearothermophilus.   总被引:4,自引:3,他引:1       下载免费PDF全文
  相似文献   

17.
Intact cells of Bacillus stearothermophilus PV72 revealed, after conventional thin-sectioning procedures, the typical cell wall profile of S-layer-carrying gram-positive eubacteria consisting of a ca. 10-nm-thick peptidoglycan-containing layer and a ca. 10-nm-thick S layer. Cell wall preparations obtained by breaking the cells and removing the cytoplasmic membrane by treatment with Triton X-100 revealed a triple-layer structure, with an additional S layer on the inner surface of the peptidoglycan. This profile is characteristic for cell wall preparations of many S-layer-carrying gram-positive eubacteria. Among several variants of strain PV72 obtained upon single colony isolation, we investigated the variant PV72 86-I, which does not exhibit an inner S layer on isolated cell walls but instead possesses a profile identical to that observed for intact cells. In the course of a controlled mild autolysis of isolated cell walls, S-layer subunits were released from the peptidoglycan of the variant and assembled into an additional S layer on the inner surface of the walls, leading to a three-layer cell wall profile as observed for cell wall preparations of the parent strain. In comparison to conventionally processed bacteria, freeze-substituted cells of strain PV72 and the variant strain revealed in thin sections a ca. 18-nm-wide electron-dense peptidoglycan-containing layer closely associated with the S layer. The demonstration of a pool of S-layer subunits in such a thin peptidoglycan layer in an amount at least sufficient for generating one coherent lattice on the cell surface indicated that the subunits must have occupied much of the free space in the wall fabric of both the parent strain and the variant. It can even be speculated that the rate of synthesis and translation of the S-layer protein is influenced by the packing density of the S-layer subunits in the periplasm of the cell wall delineated by the outer S layer and the cytoplasmic membrane. Our data indicate that the matrix of the rigid wall layer inhibits the assembly of the S-layer subunits which are in transit to the outside.  相似文献   

18.
The Bacillus stearothermophilus ctaA gene, which is required for heme A synthesis, was found upstream of the ctaBCDEF/caaEABCD gene cluster as in B. subtilis and B. firmus. The deduced protein sequence indicate that CtaA is a 35-kDa intrinsic membrane protein with seven hydrophobic segments. Alignment of CtaA sequences showed conserved residues including histidines that may be involved in heme B binding and substrate binding. Expression of ctaA in E. coli resulted in increased formation of a membrane-bound b-type cytochrome, heme A production, and severe growth inhibition. Furthermore, B. stearothermophilus CtaA produced in E. coli was found to catalyze the conversion of heme O to heme A in vitro.  相似文献   

19.
The products of phospholipid turnover in Bacillus stearothermophilus were determined in cultures labeled to equilibrium and with short pulses of [32P]phosphate and [2-3H]glycerol. Label lost from the cellular lipid pool was recovered in three fractions: low-molecular-weight extracellular products, extracellular lipid, and lipoteichoic acid (LTA). The low-molecular-weight turnover products were released from the cells during the first 10 to 20 min of a 60-min chase period and appeared to be derived primarily from phosphatidylglycerol turnover. Phosphatidylethanolamine, which appeared to be synthesized in part from the phosphatidyl group of phosphatidylglycerol, was released from the cell but was not degraded. The major product of phospholipid turnover was LTA. Essentially all of the label lost from the lipid pool during the final 40 min of the chase period was recovered as extracellular LTA. The LTA appeared to be derived primarily from the turnover of cardiolipin and the phosphatidyl group of phosphatidylglycerol. Three types of LTA were isolated; an extracellular LTA was recovered from the culture medium, and two types of LTA were extracted from membrane preparations or whole-cell lysates by the hot phenol-water procedure. Cells contained 1.5 to 2.5 mg of cellular LTA per g of cells (dry weight), over 50% of which remained associated with the membrane when cells were fractionated. Over 75% of the 3H label incorporated into the cellular LTA pool during a 90-min labeling period was released from the cells during the first cell doubling after the chase. Label lost from the lipid pool was incorporated into cellular LTA which was then modified and released into the culture medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号