首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The KRAS2 gene was localized in the rabbit by chromosomal in situ hybridization, using a 3H-labeled human cDNA probe. There were 201 silver grains on 144 metaphase spreads; 12.9% of the grains resided on chromosome 16, and 54% of these grains were located close to the centromere at 16p11----q11. Statistical analysis indicated that labeling at this region represents a significant deviation from a random distribution and thus provided evidence for the assignment of KRAS2 to 16p11----q11. In addition to the predominant labeling site on 16, there was a positive signal at the telomere of 9q, possibly representing a sequence of another member of the ras family. Our assignment of KRAS2 to rabbit chromosome 16 strengthens the argument that a fragment on this chromosome is homologous to one on human chromosome 12, which bears the KRAS2 locus.  相似文献   

2.
RNF16 (ring finger protein 16; alias terf), a member of the RING finger family, has been shown to be exclusively expressed in the testis. Human RNF16 is located at 1q42 based on PCR-assisted analysis of both a human/rodent mono-chromosomal hybrid cell panel and a radiation hybrid-mapping panel. On the other hand, chromosomal mapping of the RNF16 gene by fluorescence in situ hybridization reveals that mouse Rnf16 is located at 11B1.2-B1.3 and rat Rnf16 at 10q22. These results provide additional evidence that the mouse 11B region displays conserved linkage homology with the rat 10q22 region, whereas in the case of RNF16, this homology is only conserved among rodents, distinct from the 1q42 region of the human genome.  相似文献   

3.
Diverse cellular functions are regulated by the calcium-sensing receptor, encoded by the CASR gene, which plays an important role in calcium homeostasis. Here we provide the sequence for exon VII of the rabbit CASR gene and show that it is 91% identical to the human gene at the nucleotide level, and 95% identical at the amino acid level. The gene was mapped by fluorescence in situ hybridization, using a cosmid isolated from a genomic library, to chromosome 14q11 and this was confirmed independently by PCR amplification of flow sorted chromosomes. In addition, the cosmid detected sites with lower frequencies on four other chromosomes: 3q, 5p, 8p, and 13p. Two of these sites (5p and 13p) were also detected by a related but unidentical cosmid, and map to regions that are homologous to the mouse calcium-sensing receptor related sequences (Casr-rs); suggesting that they may represent CASR-related sequences in the rabbit. The data support the presence of a family of genes related to the calcium-sensing receptor in the G-protein coupled receptor (GPCR) superfamily, as well as extend the existing knowledge of homology for several human and rabbit chromosomes.  相似文献   

4.
We have isolated and characterized a cDNA clone containing DNA sequences coding for the noncollagenous carboxy-terminal domain of human pro alpha 2(IV) collagen. Using this cDNA clone in both Southern blot analysis of DNA isolated from human-mouse somatic-cell hybrids and in situ hybridization of normal human metaphase chromosomes, we have demonstrated that the gene coding for human pro alpha 2(IV) collagen is located at 13q33----34, in the same position on chromosome 13 as the pro alpha 1(IV) collagen gene.  相似文献   

5.
The calcium-sensing receptor (CASR), a member of the G-protein coupled receptor family, is expressed in both parathyroid and kidney, and aids these organs in sensing extracellular calcium levels. Inactivating mutations in the CASR gene have been described in familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT). Activating mutations in the CASR gene have been described in autosomal dominant hypoparathyroidism and familial hypocalcemia. The human CASR gene was mapped to Chromosome (Chr) 3q13.3-21 by fluorescence in situ hybridization (FISH). By somatic cell hybrid analysis, the gene was localized to human Chr 3 (hybridization to other chromosomes was not observed) and rat Chr 11. By interspecific backcross analysis, the Casr gene segregated with D16Mit4 on mouse Chr 16. These findings extend our knowledge of the synteny conservation of human Chr 3, rat Chr 11, and mouse Chr 16.  相似文献   

6.
Cloning, characterization and mapping of the mouse trehalase (Treh) gene   总被引:3,自引:0,他引:3  
Oesterreicher TJ  Markesich DC  Henning SJ 《Gene》2001,270(1-2):211-220
  相似文献   

7.
The human genes encoding the alpha and beta forms of the retinoic acid receptor are known to be located on chromosomes 17 (band q21.1:RARA) and 3 (band p24:RARB). By in situ hybridization, we have now localized the gene for retinoic acid receptor gamma, RARG, on chromosome 12, band q13. We also mapped the three retinoic acid receptor genes in the mouse, by in situ hybridization, on chromosomes 11, band D (Rar-a); 14, band A (Rar-b); and 15, band F (Rar-g), respectively, and in the rat, using a panel of somatic cell hybrids that segregate rat chromosomes, on chromosomes 10 (RARA), 15 (RARB), and 7 (RARG), respectively. These assignments reveal a retention of tight linkage between RAR and HOX gene clusters. They also establish or confirm and extend the following homologies: (i) between human chromosome 17, mouse chromosome 11, and rat chromosome 10 (RARA); (ii) between human chromosome 3, mouse chromosome 14, and rat chromosome 15 (RARB); and (iii) between human chromosome 12, mouse chromosome 15, and rat chromosome 7 (RARG).  相似文献   

8.
The Eker rat develops hereditary renal carcinomas (RCs) due to two hit mutations of the tumor suppressor gene, Tsc2. We previously identified using representational difference analysis (RDA), four genes that were expressed more abundantly in an Eker rat RC cell line than in normal kidney tissue. One gene, Erc (expressed in renal carcinoma) showed sequence homology to the mouse and human megakaryocyte potentiating factor (MPF)/mesothelin gene. The present study determines the full sequence of the cDNA and the exon-intron structure of the rat Erc gene and maps its locus in the chromosome by fluorescence in situ hybridization. Rat Erc and its human homologue were localized in chromosomes 10q12-21 and 16p13.3, respectively, both of which coincided with the locus of the Tsc2/TSC gene. We also found that Erc was expressed at higher levels in primary RCs compared with the normal kidney of the Eker rat. Erc may be related to carcinogenesis in the Tsc2 gene mutant (Eker) rat model.  相似文献   

9.
10.
Phosphorylase kinase (PHK), the enzyme that activates glycogen phosphorylases in muscle, liver, and other tissues, is composed of four different subunits. Recently isolated rabbit muscle cDNAs for the larger two subunits, alpha and beta, have been used to map the location of their cognate sequences on human chromosomes. Southern blot analysis of rodent x human somatic cell hybrid panels, as well as in situ chromosomal hybridization, have provided evidence of single sites for both genes. The alpha subunit gene (PHKA) is located on the proximal long arm of the X chromosome in region Xq12-q13 near the locus for phosphoglycerate kinase (PGK1). X-linked mutations leading to PHK deficiency, known to exist in humans and mice, are likely to involve this locus. This hypothesis is consistent with the proximity of the Phk and Pgk-1 loci on the mouse X chromosome. In contrast, the beta subunit gene (PHKB) was found to be autosomal and was mapped to chromosome 16, region q12-q13 on the proximal long arm. Several different autosomally inherited forms of PHK deficiency for which the PHKB could be a candidate gene have been described in humans and rats.  相似文献   

11.
Small nuclear ribonucleoproteins (snRNPs), which are composed of various U RNAs and several proteins, are components of the mRNA splicing apparatus. The snRNP protein E is encoded by a multigene family which consists of a single expressed gene and several processed pseudogenes. We have used somatic cell hybridization, in situ hybridization, and linkage analysis to both physically and genetically map the expressed E protein gene to human chromosome 1q25-43, with the most probable location being band 1q32. In addition to the snRNP E protein gene, two other snRNP components--the U1 RNA true multigene family and a group of class I U1 pseudogenes--are located on human chromosome 1.  相似文献   

12.
The human CD20 gene (B1) encodes a B lymphocyte-specific, cell-surface molecule that is involved in B cell activation and differentiation. We report that the CD20 gene is located on human chromosome 11 at position q12-q13. The location of CD20 was determined by in situ hybridization and was further confirmed by Southern blot analysis of DNA from rodent/human hybrids that contained only portions of human chromosome 11. This localization places the CD20 gene near the site of the t(11;14)(q13;q32) translocation that is found in a subgroup of B cell-lineage malignancies. The site of this translocation has been previously identified by DNA cloning and termed bcl-1. The CD20 gene was found to lie on the centromeric side of bcl-1 on chromosome 11 and to be separated from bcl-1 by at least 50 kb of DNA. These results raise the possibility that alterations in the expression of the CD20 gene may result after the t(11;14) chromosomal alteration.  相似文献   

13.
The ribonuclease inhibitor from human placenta is a tight-binding inhibitor of alkaline and neutral ribonucleases, including the blood vessel-inducing protein, angiogenin. The location of the inhibitor gene within the human genome has now been determined. Utilizing human-rodent hybrid cell lines, it was found on chromosome 11. The localization was refined to chromosome band 11p15 by in situ hybridization of the ribonuclease inhibitor cDNA to normal metaphase chromosomes. A further refinement was obtained by in situ hybridization of the probe to metaphase chromosomes from RPMI 8402 cells, a line containing a well-characterized translocation t(11;14)(p15;q11) with a chromosome 11 breakpoint between the insulin-like growth factor 2 (IGF2) and Harvey rat sarcoma viral oncogene homolog genes. This analysis has localized the ribonuclease inhibitor gene to chromosome subband 11p15.5, distal to the IGF2 gene.  相似文献   

14.
The human liver arginase gene, whose deficiency is responsible for argininemia (McKusick no. 20780), has been assigned to 6q23 through a combination of somatic cell hybrid analysis and in situ hybridization using a 1,550-base pair (bp) human DNA probe for this gene.  相似文献   

15.
The human adenine phosphoribosyltransferase gene (APRT) was mapped with respect to the haptoglobin gene (HP) and the fragile site at 16q23.2 (FRA16D). A subclone of APRT and a cDNA clone of HP were used for molecular hybridization to DNA from mouse-human hybrid cell lines containing specific chromosome 16 translocations. The APRT subclone was used for in situ hybridization to chromosomes expressing FRA16D. APRT was found to be distal to HP and FRA16D and was localized at 16q24, making the gene order cen-FRA16B-HP-FRA16D-APRT-qter.  相似文献   

16.
Nonspecific cross-reacting antigen (NCA) is a member of the carcinoembryonic antigen (CEA) gene family. Recently, a DNA segment for part of the human NCA gene was isolated and sequenced. We mapped this gene by Southern blot analysis of hybrid cells and by in situ hybridization. The Southern blot analysis indicated that the NCA gene is on human chromosome 19 and the in situ hybridizations localized the gene to band 19q13.2.  相似文献   

17.
18.
Pregnancy specific beta-1-glycoprotein (PSBG), a major product of the human placenta, is encoded by multiple genes. Southern blot hybridization of human x rodent somatic cell hybrid DNAs with a cDNA specific for one member of the PSBG gene family allowed us to map this gene to human chromosome 19. Further analysis using hybrids with subchromosomal segments of 19q revealed that the gene maps to the distal segment of region 19q13.1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号