首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and p38, are activated in response to infectious agents and innate immune stimulators such as CpG DNA, and regulate the subsequent initiation and termination of immune responses. CpG DNA activates p38 and ERK with slightly different kinetics in monocytic cells. The present studies investigated the roles of these two key mitogen-activated protein kinases in regulating the CpG DNA-induced production of pro- and anti-inflammatory cytokines in the macrophage-like cell line RAW264.7. p38 activity was essential for the induction of both IL-10 and IL-12 expression by CpG DNA. In contrast, CpG DNA-mediated ERK activation was shown to suppress IL-12 production, but to be essential for the CpG DNA-induced IL-10 production. Studies using rIL-10 and IL-10 gene-deficient mice demonstrated that the inhibitory effect of ERK on CpG DNA-mediated IL-12 production is indirect, due to the role of ERK in mediating IL-10 production. These results demonstrate that ERK and p38 differentially regulate the production of pro- and anti-inflammatory cytokines in APCs that have been activated by CpG DNA. CpG DNA-induced p38 activity is required for the resulting innate immune activation. In contrast, ERK plays a central negative regulatory role in the CpG DNA-mediated Th1 type response by promoting production of the Th2 type cytokine, IL-10.  相似文献   

2.
Several types of immune cells possess pattern recognition receptors (PRR) that can distinguish prokaryotic DNA from vertebrate DNA by detecting unmethylated CpG dinucleotides in particular base contexts (CpG motifs). Bacterial DNA or synthetic oligodeoxynucleotides containing these CpG motifs activate both innate and acquired immune responses that have evolved to protect against intracellular infections. These T helper 1 (Th1)-like immune responses include activation of B cells, dendritic cells, macrophages, and natural killer (NK) cells. CpG DNA-induced immune activation can protect against infection either alone or in combination with a vaccine and is effective in the immunotherapy of allergic diseases and cancer. Human clinical trials using such CpG DNA are currently underway.  相似文献   

3.
Unmethylated CpG motifs present in bacterial DNA stimulate a rapid and robust innate immune response. Human cell lines and PBMC that recognize CpG DNA express membrane-bound human Toll-like receptor 9 (hTLR9). Cells that are not responsive to CpG DNA become responsive when transfected with hTLR9. Expression of hTLR9 dramatically increases uptake of CpG (but not control) DNA into endocytic vesicles. Upon cell stimulation, hTLR9 and CpG DNA are found in the same endocytic vesicles. Cells expressing hTLR9 are stimulated by CpG motifs that are active in primates but not rodents, suggesting that evolutionary divergence between TLR9 molecules underlies species-specific differences in the recognition of bacterial DNA. These findings indicate that hTLR9 plays a critical role in the CpG DNA-mediated activation of human cells.  相似文献   

4.
Bacterial DNA as immune cell activator   总被引:12,自引:0,他引:12  
Pattern recognition receptors of the innate and adaptive immune systems apparently recognize unmethylated CpG motifs of bacterial DNA. Cells of the innate immune system are activated directly by CpG motifs, and the resulting response dictates a Th1 bias to the developing adaptive immune response. Interestingly, antigen receptor occupancy of cells of the adaptive immune system augments their responsiveness to CpG motifs, suggesting that co-stimulatory mechanisms are operative.  相似文献   

5.
Bacterial DNA containing unmethylated CpG motifs is a pathogen-associated molecular pattern (PAMP) that interacts with host immune cells via a toll-like receptor (TLR) to induce immune responses. DNA binding and internalization into cells is independent of TLR expression, receptor-mediated, and required for cell activation. The objective of this study was to determine whether exposure of immune cells to bacterial DNA affects DNA binding and internalization. Treatment of RAW264.7 cells with CpG oligodeoxynucleotide (ODN) for both 18 and 42 h resulted in a significant increase in DNA binding, whereas non-CpG ODN had no effect on DNA binding. Enhanced DNA binding was non-sequence-specific, inhibited by unlabeled DNA, showed saturation, was consistent with increased cell surface DNA receptors, and resulted in enhanced internalization of DNA. Treatment with Escherichia coli DNA or lipopolysaccharide (LPS) also resulted in a significant increase in DNA binding, but treatment with interleukin-1alpha, tumor necrosis factor-alpha, or phorbol 12-myristate 13-acetate had no effect on DNA binding. Soluble factors produced in response to treatment with CpG ODN or LPS did not affect DNA binding. These studies demonstrate that one consequence of activating the host innate immune response by bacterial infection is enhanced binding and internalization of DNA. During this period of increased DNA internalization, RAW264.7 cells were hypo-responsive to continued stimulation by CpG ODN, as assessed by tumor necrosis factor-alpha activity. We speculate the biological significance of increasing DNA binding and internalization following interaction with bacterial PAMPs may provide a mechanism to limit an ongoing immune inflammatory response by enhancing clearance of bacterial DNA from the extracellular environment.  相似文献   

6.
Innate immunity has recently gained renewed interest in its ability to regulate adaptive immunity. Among the innate immune signals, CpG DNA has revealed its potential as a vaccine adjuvant. However, the cellular mechanism for the effect of CpG DNA on the humoral immune response is not well understood. Here, we investigated the effects of CpG DNA on human B cell differentiation using highly purified B cell subsets: naive, germinal center (GC), and memory B cells. In the in vitro culture system that mimics the primary or secondary immune response in vivo, CpG DNA markedly augmented the proliferation and generation of plasma cells from naive and memory B cells. CpG DNA dramatically increased plasma cell generation from GC B cells. However, CpG DNA did not have effect on memory B cell generation from GC B cells. These results suggest that CpG DNA potentiates the B cell adaptive immune response by enhancing terminal differentiation, but does not affect the generation of memory B cells.  相似文献   

7.
Chen J  Nag S  Vidi PA  Irudayaraj J 《PloS one》2011,6(4):e17991
Toll-like receptor 9 (TLR9) activates the innate immune system in response to oligonucleotides rich in CpG whereas DNA lacking CpG could inhibit its activation. However, the mechanism of how TLR9 interacts with nucleic acid and becomes activated in live cells is not well understood. Here, we report on the successful implementation of single molecule tools, constituting fluorescence correlation/cross-correlation spectroscopy (FCS and FCCS) and photon count histogram (PCH) with fluorescence lifetime imaging (FLIM) to study the interaction of TLR9-GFP with Cy5 labeled oligonucleotide containing CpG or lacking CpG in live HEK 293 cells. Our findings show that i) TLR9 predominantly forms homodimers (80%) before binding to a ligand and further addition of CpG or non CpG DNA does not necessarily increase the proportion of TLR9 dimers, ii) CpG DNA has a lower dissociation constant (62 nM±9 nM) compared to non CpG DNA (153 nM±26 nM) upon binding to TLR9, suggesting that a motif specific binding affinity of TLR9 could be an important factor in instituting a conformational change-dependant activation, and iii) both CpG and non CpG DNA binds to TLR9 with a 1∶2 stoichiometry in vivo. Collectively, through our findings we establish an in vivo model of TLR9 binding and activation by CpG DNA using single molecule fluorescence techniques for single cell studies.  相似文献   

8.
Unmethylated CpG motifs present in bacterial DNA rapidly trigger an innate immune response characterized by the activation of Ig- and cytokine-secreting cells. Synthetic oligonucleotides (ODNs) containing CpG motifs mimic this activity, triggering monocytes to proliferate, secrete and/or differentiate. Analysis of hundreds of novel ODNs led to the identification of two structurally distinct classes of CpG motif that differentially activate human monocytes. ODNs of the "K"-type interact with Toll-like receptor 9 and induce monocytes to proliferate and secrete IL-6. In contrast, "D"-type ODNs trigger monocytes to differentiate into mature dendritic cells.  相似文献   

9.
Recognition of danger of infection by innate immune cells is a prerequisite to combat infections and to activate T and B cells. Pathogen-associated molecular patterns (PAMP) play a fundamental role in this process. PAMPs are sensed by at least ten different Toll-like receptors (TLR). Within the realm of PAMPs, CpG DNA that is recognized by TLR-9 has an outstanding propensity to induce a milieu that favors activation of T lymphocytes and biases Th1-dominated immune responses. Therefore CpG DNA has become a promising immuno-therapeutical candidate to assist and to direct immune responses such as in vaccination or modulation of allergic responses. As opposed to other PAMPs, CpG DNA can be synthesized with defined purity and base composition. Moreover, chemical substitutions can confer new qualities to synthetic CpG DNA.  相似文献   

10.
Macrophages are an important component of the innate immune response to infection by microbial pathogens. The activation of macrophages by pathogens is largely mediated by Toll-like receptors (TLRs). Bacterial DNA, which contains unmethylated CpG dinucleotide motifs, is specifically recognised by TLR9 and triggers the activation of a complex network of intracellular signalling pathways that orchestrates the ensuing inflammatory responses of macrophages to the pathogen. Here, we have established that CpG DNA promotes reorganisation of the actin cytoskeleton and enhances cell spreading by primary mouse bone marrow macrophages. CpG DNA stimulation resulted in an approximately 70% increase in cell size. Notably, CpG DNA-induced cell spreading was dependent on the activity of Src-family kinases. Tyrosine phosphorylation of several proteins was increased in a Src-family kinase-dependent manner following CpG DNA stimulation of bone marrow macrophages, including the cytoskeletal protein paxillin. Paxillin was phosphorylated both in vitro and in vivo by the Src-family kinase Hck. Significantly, paxillin from CpG DNA-stimulated bone marrow macrophages had a greater capacity to bind the SH2 domain of the adapter protein Crk than did paxillin from unstimulated bone marrow macrophages. Furthermore, phosphorylation of paxillin by Hck created a binding site for Crk. We propose that the formation of paxillin-Crk complexes may mediate the cytoskeletal changes that underlie the increased cell spreading of macrophages following their activation by CpG DNA.  相似文献   

11.
In order to efficiently stimulate an innate immune response, DNA must be of sufficient length and purity. We present a method where double stranded DNA (dsDNA) which has the requisite characteristics to stimulate the cytoplasmic DNA sensing pathways can be generated cheaply and with ease. By the concatemerization of short, synthetic oligonucleotides (which lack CpG motifs), dsDNA can be generated to be of sufficient length to activate the cytosolic DNA sensing pathway. This protocol involves blunt end ligation of the oligonucleotides in the presence of polyethylene glycol (PEG), which provides an environment for efficient ligation to occur. The dsDNA concatemers can be used, following purification by phenol/chloroform extraction, to simulate the innate immune response in vitro by standard transfection protocols. This DNA can also be used to stimulate innate immunity in vivo by intradermal injection into the ear pinna of a mouse, for example. By standardizing the concatemerization process and the subsequent stimulation protocols, a reliable and reproducible activation of the innate immune system can be produced.  相似文献   

12.
Effect of suppressive DNA on CpG-induced immune activation   总被引:6,自引:0,他引:6  
Bacterial DNA and synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs stimulate a strong innate immune response. This stimulation can be abrogated by either removing the CpG DNA or adding inhibitory/suppressive motifs. Suppression is dominant over stimulation and is specific for CpG-induced immune responses (having no effect on LPS- or Con A-induced activation). Individual cells noncompetitively internalize both stimulatory and suppressive ODN. Studies using ODN composed of both stimulatory and suppressive motifs indicate that sequence recognition proceeds in a 5'-->3' direction, and that a 5' motif can block recognition of immediately 3' sequences. These findings contribute to our understanding of the immunomodulatory activity of DNA-based products and the rules that govern immune recognition of stimulatory and suppressive motifs.  相似文献   

13.
Innate immunity provides the first line of defense against invading pathogens and is essential for survival in the absence of adaptive immune responses. Innate immune recognition relies on a limited number of germ-line encoded receptors, such as Toll-like receptors (TLRs), that evolved to recognize conserved molecular patterns of microbial origin. To date, ten transmembrane proteins in the TLR family have been described. It is becoming increasingly clear that bacterial CpG DNA and synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG are potent inducers of the innate immune system including dendritic cells (DCs), macrophages, and natural killer (NK) and NKT cells. Recent studies indicate that mucosal or systemic delivery of CpG DNA can act as a potent adjuvant in a vaccine combination or act alone as an anti-microbial agent. Recently, it was shown that TLR9 is essential for the recognition of unmethylated CpG DNA since cells from TLR9-deficient mice are unresponsive to CpG stimulation. Although the effects of CpG DNA on bone marrow-derived cells are beginning to unfold, there has been little or no information regarding the mechanisms of CpG DNA function on non-immune cells or tissues. This review focuses on the recent advances in CpG-DNA/TLR9 signaling effects on the activation of innate immunity.  相似文献   

14.
15.
Unmethylated CpG motifs present in bacterial DNA are recognized by leucocyte receptors triggering an immune response. We have evaluated herein the immunomodulatory actions of a CpG motif in an important commercial fish, the gilthead seabream. Thus, 1, 3 and 7days after intraperitoneal injection of the CpG motif the seabream immune parameters and gene expression profile were evaluated. Firstly, humoral innate immune responses were unaffected by CpG ODN 1668. On the other hand, ODN injection significantly enhanced the number of peritoneal leucocytes (PELs) 1day after injection and increased the main innate immune parameters of PELs and HKLs (head-kidney leucocytes). Thus, injection of ODN 1668 significantly increased respiratory burst, peroxidase, cytotoxic and phagocytic activities, with variations in increment and time. The cytotoxic activity of HKLs was the most increased (up to 4.2-fold). Moreover, the expression profile of immune-relevant genes in head-kidney was affected, with substantial up-regulation of TLR9, IL-1beta, Mx, TGFbeta and Gal8 gene expression. These results demonstrate that unmethylated CpG motifs prime the fish immune response with promising applications for aquaculture.  相似文献   

16.
Bacterial DNA and synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotides (CpG motifs) have been shown to induce potential immune responses. In this study, we designed a recombinant plasmid containing multi-copy CpG motifs, and observed its effects on innate immune responses of fish and prawn. The results showed that such plasmid DNA, compared to the vacant vector, can highly induce the activation of head kidney macrophages and the proliferation of peripheral blood leukocytes in Carassius auratus and Lateolabrax japonicus in vitro, as well as the activity of humoral defense proteins and the antibacterial activity of haemolymph in Litopenaeus vannamei in vivo. It implies that the multi-copy CpG motifs harboured in plasmid could contribute to these innate immunostimulatory effects. Therefore, the study suggested that the plasmid containing multi-copy CpG motifs might have its potential application in improving host resistance to pathogen insults in aquaculture, and have its notable advantages of high efficacy, economical cost and application to a broad range of aquatic species.  相似文献   

17.
Given the genomic abundance and susceptibility to DNA methylation, interspersed repetitive sequences in the human genome can be exploited as valuable resources in genome-wide methylation studies. To learn about the relationships between DNA methylation and repeat sequences, we performed a global measurement of CpG dinucleotide frequencies for interspersed repetitive sequences and inferred germline methylation patterns in the human genome. Although extensive CpG depletion was observed for most repeat sequences, those in the proximity to CpG islands have been relatively removed from germline methylation being the potential source of germline activation. We also investigated the CpG depletion patterns of Alu pairs to see whether they might play an active role in germline methylation. Two kinds of Alu pairs, direct or inverted pairs classified according to the orientation, showed contrast CpG depletion patterns with respect to separating distance of Alus, i.e., as two Alu elements are more closely spaced in a pair, a higher extent of CpG depletion was observed in inverted orientation and vice versa for directly repetitive Alu pairs. This suggests that specific organization of repetitive sequences, such as inverted Alu pairs, might play a role in triggering DNA methylation consistent with a homology-dependent methylation hypothesis.  相似文献   

18.
The innate immune system evolved to recognize conserved microbial products, termed pathogen-associated molecular patterns (PAMPs), which are invariant among diverse groups of microorganisms. PAMPs are recognized by a set of germ-line encoded pattern recognition receptors (PRRs). Among the best characterized PAMPs are bacterial lipopolysaccharide (LPS), peptidoglycan (PGN), mannans, and other constituents of bacterial and fungal cell walls, as well as bacterial DNA. Recognition of bacterial DNA is the most enigmatic of these, as it depends on a particular sequence motif, called the CpG motif, in which an unmethylated CpG present in a particular sequence context accounts for a potent immunostimulatory activity of CpG DNA. Receptor(s) of the innate immune system that mediate recognition of CpG DNA are currently unknown. Here, we report that recognition of CpG DNA requires MyD88, an adaptor protein involved in signal transduction by the Toll-like receptors (TLRs), essential components of innate immune recognition in both Drosophila and mammals [1,2]. Signaling induced by CpG DNA was found to be unaffected in cells deficient in TLR2 or TLR4, suggesting that some other member of the Toll family mediates recognition of bacterial DNA.  相似文献   

19.
The immune system of vertebrates is able to detect bacterial DNA based on the presence of unmethylated CpG motifs. We examined the therapeutic potential of oligodeoxynucleotides with CpG motifs (CpG ODN) in a colon carcinoma model in BALB/c mice. Tumors were induced by s.c. injection of syngeneic C26 cells or Renca kidney cancer cells as a control. Injection of CpG ODN alone or in combination with irradiated tumor cells did not protect mice against subsequent tumor challenge. In contrast, weekly injections of CpG ODN into the margin of already established tumors resulted in regression of tumors and complete cure of mice. The injection site was critical, since injection of CpG ODN at distant sites was not effective. Mice with two bilateral C26 tumors rejected both tumors upon peritumoral injection of one tumor, indicating the development of a systemic immune response. The tumor specificity of the immune response was demonstrated in mice bearing a C26 tumor and a Renca tumor at the same time. Mice that rejected a tumor upon peritumoral CpG treatment remained tumor free and were protected against rechallenge with the same tumor cells, but not with the other tumor, demonstrating long term memory. Tumor-specific CD8 T cells as well as innate effector cells contributed to the antitumor activity of treatment. In conclusion, peritumoral CpG ODN monotherapy elicits a strong CD8 T cell response and innate effector mechanisms that seem to act in concert to overcome unresponsiveness of the immune system toward a growing tumor.  相似文献   

20.
CpG DNA has been recognized as a powerful stimulant of dendritic cells (DCs). In this study, we demonstrate that CpG DNA inhibits spontaneous apoptosis of DCs. CpG DNA up-regulated cellular inhibitor of apoptosis proteins (cIAPs) as well as Bcl-2 and Bcl-x(L), but down-regulated active caspase-3. Although CpG DNA activated p38 mitogen-activated protein kinase, extracellular signal-related kinase, and phosphatidylinositide-3'-OH kinase (PI3K), only the blocking of PI3K inhibited the CpG DNA-induced DC survival. Moreover, while the expression of Bcl-2 and Bcl-x(L) depends on both PI3K and p38 mitogen-activated protein kinase, the up-regulation of cIAPs and the down-regulation of active caspase-3 by CpG DNA require PI3K activation, suggesting PI3K-dependent up-regulation of cIAPs in the antiapoptotic activity of CpG DNA in DCs. This study indicates that CpG DNA provides a survival signal to DCs, which might be one of mechanisms by which bacterial DNA stimulates and maintains the innate immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号