首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 1 毫秒
1.
High-affinity ligands of non-peptidic nature, binding to the class I major histocompatibility complex protein HLA B*2705 whose expression is strongly linked to the pathogenesis of the autoimmune disease ankylosing spondylitis, should give way to a selective immunotherapy by blocking or antagonising the interaction with autoreactive T cell clones. Here we present experimental data on the binding of modified peptides, designed to optimally bind to HLA-B*2705 by filling a hydrophobic binding pocket (pocket D) with nonencoded aromatic amino acids. Three peptides with altered side chains (alpha-naphthylalanine, beta-naphthylalanine and homophenylalanine) in position 3 were synthesised. The thermal denaturation profiles of the HLA protein in complex with the modified peptides, monitored by circular dichroism spectroscopy, showed a significant shift towards higher melting temperatures with respect to the parent T cell epitope. The proposed binding mode of the nonnatural peptides was checked by site-directed mutagenesis of the pocket D, hypothesised to accommodate the large hydrophobic side chains. Reducing the size and depth of the pocket by mutating Leu l56 into Trp only affects the binding of the non-natural ligands, thus providing experimental evidence that the nonnatural peptide amino acids bind as predicted to the host MHC protein. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The basis of proper recognition of pathogens and tumours is provided by adaptive immunity. This immunological reaction of the recognition function of T-cell receptors on T lymphocytes detects antigenic peptides bound to major histocompatibility complex (MHC) molecules. Structural insight into this process has few grown considerably in the last years. In some of the cases, antigens are self-protein fragments causing autoimmunity diseases. Type 1 diabetes is such a disease connected with the human leukocyte antigen-DQ8 molecule, a class II MHC glycoprotein. Its crystal structure, complexed with LVEALYLVCGERGG peptide (insulin B peptide), has been solved, and important information about the significance of P1, P4 and P9 binding pockets has been discovered. The complex structure also revealed an unusual large number of intermolecular hydrogen bonds between insulin B peptide and MHC molecule. To further investigate the dynamics of peptide/MHC interactions, we perform molecular dynamic simulations in explicit water. Analysis of the results provided useful information of the binding of the peptide antigen to MHC molecule, which is supported by numerous hydrogen bonds besides the electrostatic (P1 and P9 pockets) or hydrophobic interactions (P4). Results also allowed some implications to be drawn for the role of residues located outside of the binding groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号