首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon cycling processes in ecosystems are generally believed to be well understood. Carbon, hydrogen, oxygen and other essential elements are chemically converted from inorganic to organic compounds primarily in the process of photosynthesis. Secondary metabolic processes cycle carbon in and among organisms and carbon is ultimately released back to the environment as CO2 by respiratory processes. Unfortunately, our understanding of this cycle was determined under the assumption that the primary inorganic form of C (CO2 in the atmosphere) was relatively constant. With the emerging concensus that atmospheric carbon concentration is increasing, we must now reassess our understanding of the carbon cycle. How will plants, animals and decomposers respond to a doubling of carbon supply? Will biological productivity be accelerated? If plant productivity increases will a predictable percentage of the increase be accumulated as increased standing crop? Or, is it possible that doubling the availability of CO2 will increase metabolic activity at all trophic levels resulting in no net increase in system standing crop? The purpose of this paper is to review evidence for physiological and growth responses of plants to carbon dioxide enhancement. Essentially no research has been completed on the ecological aspects of these questions. From this review, I conclude that accurate predictions of future ecosystem responses to increasing atmospheric carbon dioxide concentration are not possible without additional understanding of physiological and ecological mechanisms.  相似文献   

2.
Simulations by global terrestrial biogeochemical models (TBMs) consistently underestimate the concentration of atmospheric carbon dioxide (CO2 at high latitude monitoring stations during the non-growing season. We hypothesized that heterotrophic respiration is underestimated during the nongrowing season primarily because TBMs do not generally consider the insulative effects of snowpack on soil temperature. To evaluate this hypothesis, we compared the performance of baseline and modified versions of three TBMs in simulating the seasonal cycle of atmospheric CO2 at high latitude CO2 monitoring stations; the modified version maintained soil temperature at 0 °C when modeled snowpack was present. The three TBMs include the Carnegie-Ames-Stanford Approach (CASA), Century, and the Terrestrial Ecosystem Model (TEM). In comparison with the baseline simulation of each model, the snowpack simulations caused higher releases of CO2 between November and March and greater uptake of CO2 between June and August for latitudes north of 30° N. We coupled the monthly estimates of CO2 exchange, the seasonal carbon dioxide flux fields generated by the HAMOCC3 seasonal ocean carbon cycle model, and fossil fuel source fields derived from standard sources to the three-dimensional atmospheric transport model TM2 forced by observed winds to simulate the seasonal cycle of atmospheric CO2 at each of seven high latitude monitoring stations. In comparison to the CO2 concentrations simulated with the baseline fluxes of each TBM, concentrations simulated using the snowpack fluxes are generally in better agreement with observed concentrations between August and March at each of the monitoring stations. Thus, representation of the insulative effects of snowpack in TBMs generally improves simulation of atmospheric CO2 concentrations in high latitudes during both the late growing season and nongrowing season. These simulations highlight the global importance of biogeochemical processes during the nongrowing season in estimating carbon balance of ecosystems in northern high and temperate latitudes.  相似文献   

3.
The terrestrial carbon cycle plays a critical role in determining levels of atmospheric CO2 that result from anthropogenic carbon emissions. Elevated atmospheric CO2 is thought to stimulate terrestrial carbon uptake, through the process of CO2 fertilization of vegetation productivity. This negative carbon cycle feedback results in reduced atmospheric CO2 growth, and has likely accounted for a substantial portion of the historical terrestrial carbon sink. However, the future strength of CO2 fertilization in response to continued carbon emissions and atmospheric CO2 rise is highly uncertain. In this paper, the ramifications of CO2 fertilization in simulations of future climate change are explored, using an intermediate complexity coupled climate–carbon model. It is shown that the absence of future CO2 fertilization results in substantially higher future CO2 levels in the atmosphere, as this removes the dominant contributor to future terrestrial carbon uptake in the model. As a result, climate changes are larger, though the radiative effect of higher CO2 on surface temperatures in the model is offset by about 30% due to reduced positive dynamic vegetation feedbacks; that is, the removal of CO2 fertilization results in less vegetation expansion in the model, which would otherwise constitute an important positive surface albedo‐temperature feedback. However, the effect of larger climate changes has other important implications for the carbon cycle – notably to further weaken remaining carbon sinks in the model. As a result, positive climate–carbon cycle feedbacks are larger when CO2 fertilization is absent. This creates an interesting synergism of terrestrial carbon cycle feedbacks, whereby positive (climate–carbon cycle) feedbacks are amplified when a negative (CO2 fertilization) feedback is removed.  相似文献   

4.
Significance of ocean carbonate budgets for the global carbon cycle   总被引:2,自引:0,他引:2  
Changes in the trace gas composition of the atmosphere over glacial–interglacial cycles are linked to changes in the oceanic carbon cycle. This paper examines the role of biologically driven fluxes of organic and inorganic carbon in modifying the carbon dioxide chemistry of the oceans, and the corresponding implications for the partitioning of CO2 between the atmosphere and ocean. Relevant details of the marine carbon system are presented together with an assessment of the significance of remineralization and dissolution processes. Recent estimates of the marine carbonate fluxes show significant uncertainties and inconsistencies which must be resolved in order to assess fully the role of the oceans' biota in the marine carbon system. Various types of ocean carbon cycle models have been developed in order to interpret the changes in past atmospheric carbon dioxide. Some take account of the role of the oceans' biota, focussing in the main on the cycling of organic matter. Relatively few have considered the role of the carbonate pump and the subtle interactions between organic and inorganic carbon cycling. The significance of carbonate formation and dissolution, and of the effects of global change on the marine carbonate system, for air–sea fluxes of CO2 are discussed. Finally some recommendations for future research are made in order to improve our understanding of how spatial and temporal variation in marine carbonate fluxes, in conjunction with processes determining the oxidation and burial of organic matter in the oceans, affect levels of CO2 in the atmosphere.  相似文献   

5.
Understanding changes in terrestrial carbon balance is important to improve our knowledge of the regional carbon cycle and climate change. However, evaluating regional changes in the terrestrial carbon balance is challenging due to the lack of surface flux measurements. This study reveals that the terrestrial carbon uptake over the Republic of Korea has been enhanced from 1999 to 2017 by analyzing long‐term atmospheric CO2 concentration measurements at the Anmyeondo Station (36.53°N, 126.32°E) located in the western coast. The influence of terrestrial carbon flux on atmospheric CO2 concentrations (ΔCO2) is estimated from the difference of CO2 concentrations that were influenced by the land sector (through easterly winds) and the Yellow Sea sector (through westerly winds). We find a significant trend in ΔCO2 of ?4.75 ppm per decade (p < .05) during the vegetation growing season (May through October), suggesting that the regional terrestrial carbon uptake has increased relative to the surrounding ocean areas. Combined analysis with satellite measured normalized difference vegetation index and gross primary production shows that the enhanced carbon uptake is associated with significant nationwide increases in vegetation and its production. Process‐based terrestrial model and inverse model simulations estimate that regional terrestrial carbon uptake increases by up to 18.9 and 8.0 Tg C for the study period, accounting for 13.4% and 5.7% of the average annual domestic carbon emissions, respectively. Atmospheric chemical transport model simulations indicate that the enhanced terrestrial carbon sink is the primary reason for the observed ΔCO2 trend rather than anthropogenic emissions and atmospheric circulation changes. Our results highlight the fact that atmospheric CO2 measurements could open up the possibility of detecting regional changes in the terrestrial carbon cycle even where anthropogenic emissions are not negligible.  相似文献   

6.
The efforts to explain the ‘missing sink’ for anthropogenic carbon dioxide (CO2) have included in recent years the role of nitrogen as an important constraint for biospheric carbon fluxes. We used the Nitrogen Carbon Interaction Model (NCIM) to investigate patterns of carbon and nitrogen storage in different compartments of the terrestrial biosphere as a consequence of a rising atmospheric CO2 concentration, in combination with varying levels of nitrogen availability. This model has separate but closely coupled carbon and nitrogen cycles with a focus on soil processes and soil–plant interactions, including an active compartment of soil microorganisms decomposing litter residues and competing with plants for available nitrogen. Biological nitrogen fixation is represented as a function of vegetation nitrogen demand. The model was validated against several global datasets of soil and vegetation carbon and nitrogen pools. Five model experiments were carried out for the modeling periods 1860–2002 and 2002–2100. In these experiments we varied the nitrogen availability using different combinations of biological nitrogen fixation, denitrification, leaching of soluble nitrogen compounds with constant or rising atmospheric CO2 concentrations. Oversupply with nitrogen, in an experiment with nitrogen fixation, but no nitrogen losses, together with constant atmospheric CO2, led to some carbon sequestration in organismic pools, which was nearly compensated by losses of C from soil organic carbon pools. Rising atmospheric CO2 always led to carbon sequestration in the biosphere. Considering an open nitrogen cycle including dynamic nitrogen fixation, and nitrogen losses from denitrification and leaching, the carbon sequestration in the biosphere is of a magnitude comparable to current observation based estimates of the ‘missing sink.’ A fertilization feedback between the carbon and nitrogen cycles occurred in this experiment, which was much stronger than the sum of separate influences of high nitrogen supply and rising atmospheric CO2. The demand‐driven biological nitrogen fixation was mainly responsible for this result. For the modeling period 2002–2100, NCIM predicts continued carbon sequestration in the low range of previously published estimates, combined with a plausible rate of CO2‐driven biological nitrogen fixation and substantial redistribution of nitrogen from soil to plant pools.  相似文献   

7.
This study tests the ability of five Dynamic Global Vegetation Models (DGVMs), forced with observed climatology and atmospheric CO2, to model the contemporary global carbon cycle. The DGVMs are also coupled to a fast ‘climate analogue model’, based on the Hadley Centre General Circulation Model (GCM), and run into the future for four Special Report Emission Scenarios (SRES): A1FI, A2, B1, B2. Results show that all DGVMs are consistent with the contemporary global land carbon budget. Under the more extreme projections of future environmental change, the responses of the DGVMs diverge markedly. In particular, large uncertainties are associated with the response of tropical vegetation to drought and boreal ecosystems to elevated temperatures and changing soil moisture status. The DGVMs show more divergence in their response to regional changes in climate than to increases in atmospheric CO2 content. All models simulate a release of land carbon in response to climate, when physiological effects of elevated atmospheric CO2 on plant production are not considered, implying a positive terrestrial climate‐carbon cycle feedback. All DGVMs simulate a reduction in global net primary production (NPP) and a decrease in soil residence time in the tropics and extra‐tropics in response to future climate. When both counteracting effects of climate and atmospheric CO2 on ecosystem function are considered, all the DGVMs simulate cumulative net land carbon uptake over the 21st century for the four SRES emission scenarios. However, for the most extreme A1FI emissions scenario, three out of five DGVMs simulate an annual net source of CO2 from the land to the atmosphere in the final decades of the 21st century. For this scenario, cumulative land uptake differs by 494 Pg C among DGVMs over the 21st century. This uncertainty is equivalent to over 50 years of anthropogenic emissions at current levels.  相似文献   

8.
人类活动造成大气二氧化碳(CO2)浓度不断升高,使当今世界面临着气候变化的重大危机。微生物CO2固定为实现地球“碳中和”提供了一条有前景的绿色发展路线。与自养微生物相比,异养微生物具有更快的生长速度和更先进的遗传工具,但是其固定CO2的能力还很有限。近年来,基于合成生物学技术强化异养微生物CO2固定受到诸多关注,主要包括优化能量供给、改造羧化途径以及基于异养微生物间接固定CO2。本综述将围绕上述3个方面重点讨论异养微生物CO2固定的研究进展,为将来更好地利用微生物CO2固定技术实现“碳达峰、碳中和”提供参考。  相似文献   

9.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.  相似文献   

10.
大气中CO2浓度持续升高和全球气候变暖是亟待解决的重大环境问题。自养微生物在环境中广泛分布,能直接参与CO2的同化,因此研究自养微生物同化CO2的分子生态学机制具有重大的科学意义。以往对自养微生物的研究多针对基因组DNA,从DNA水平揭示了不同生态系统中碳同化自养微生物的种群结构和多样性,但这些微生物在生态系统中的具体功能有待进一步的研究。近年来,随着转录组学研究技术和稳定同位素探针技术(SIP)的发展,自养微生物同化CO2的生态机理研究不断深入,这些研究明确揭示了碳同化自养微生物是河流、湖泊和海洋生态系统中CO2固定作用的驱动者,并新发现了一些具有CO2同化功能的微生物群落。基于国内外有关研究进展,从DNA和RNA水平上对自养微生物同化CO2的分子机理以及稳定同位素探针技术(SIP)在碳同化微生物研究中的应用进行了分析和总结,初步展望了RNA-SIP技术在陆地生态系统碳同化微生物分子生态学研究中的前景。同时,探讨了陆地生态系统同化碳的转化和稳定性机理,以期为深入了解生态系统碳循环过程和应对气候变化提供理论依据。  相似文献   

11.
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing.  相似文献   

12.
土壤CO2及岩溶碳循环影响因素综述   总被引:2,自引:0,他引:2  
赵瑞一  吕现福  蒋建建  段逸凡 《生态学报》2015,35(13):4257-4264
全球碳循环已成为全球气候变化的核心问题之一,岩溶作用对大气CO2浓度的调节以及其与土壤CO2的密切关系也受到了国内外普遍关注。岩溶作用消耗土壤CO2对大气碳库起到了重要的减源作用,对土壤CO2进行研究将有利于进一步揭示岩溶碳循环过程。因此从气候条件、土壤理化性质、土地利用类型等方面综述了土壤CO2的影响因素以及其对岩溶碳循环的影响,并提出其它酸参与到岩溶碳循环中将会减弱岩溶碳汇效应。由于各个因素之间往往相互联系,共同影响土壤CO2和岩溶碳循环,在研究岩溶碳汇时,需以地球系统科学和岩溶动力系统理论为指导,综合考虑大气圈、水圈、岩石圈、生物圈中各种因素的影响。  相似文献   

13.
Carbon dioxide (CO2) is a potent greenhouse gas whose presence in the atmosphere is a critical factor for global warming. At the same time atmospheric CO2 is also a cheap and readily available carbon source that can in principle be used to synthesize value-added products. However, as uncatalyzed chemical CO2-fixation reactions usually require quite harsh conditions to functionalize the CO2 molecule, not many processes have been developed that make use of CO2. In contrast to synthetical chemistry, Nature provides a multitude of different carboxylating enzymes whose carboxylating principle(s) might be exploited in biotechnology. This review focuses on the biochemical features of carboxylases, highlights possible evolutionary scenarios for the emergence of their reactivity, and discusses current, as well as potential future applications of carboxylases in organic synthesis, biotechnology and synthetic biology.  相似文献   

14.
Urban  O. 《Photosynthetica》2003,41(1):9-20
The dynamics of the terrestrial ecosystems depend on interactions between a number of biogeochemical cycles (i.e. carbon, nutrient, and hydrological cycles) that may be modified by human actions. Conversely, terrestrial ecosystems are important components of these cycles that create the sources and sinks of important greenhouse gases (e.g. carbon dioxide, methane, nitrous oxide). Especially, carbon is exchanged naturally among these ecosystems and the atmosphere through photosynthesis, respiration, decomposition, and combustion processes. Continuous increase of atmospheric carbon dioxide (CO2) concentration has led to extensive research over the last two decades, during which more then 1 400 scientific papers describing impacts of elevated [CO2] (EC) on photosynthesis have been published. However, the degree of response is very variable, depending on species, growing conditions, mineral nutrition, and duration of CO2 enrichment. In this review, I have summarised the major physiological responses of plants, in particular of trees, to EC including molecular and primary, especially photosynthetic, physiological responses. Likewise, secondary (photosynthate translocation and plant water status) and tertiary whole plant responses including also plant to plant competition are shown.  相似文献   

15.
Rozema  J. 《Plant Ecology》1993,104(1):173-190
In general, C3 plant species are more responsive to atmospheric carbon dioxide (CO2) enrichment than C4-plants. Increased relative growth rate at elevated CO2 primarily relates to increased Net Assimilation Rate (NAR), and enhancement of net photosynthesis and reduced photorespiration. Transpiration and stomatal conductance decrease with elevated CO2, water use efficiency and shoot water potential increase, particularly in plants grown at high soil salinity. Leaf area per plant and leaf area per leaf may increase in an early growth stage with increased CO2, after a period of time Leaf Area Ratio (LAR) and Specific Leaf Area (SLA) generally decrease. Starch may accumulate with time in leaves grown at elevated CO2. Plants grown under salt stress with increased (dark) respiration as a sink for photosynthates, may not show such acclimation to increased atmospheric CO2 levels. Plant growth may be stimulated by atmospheric carbon dioxide enrichment and reduced by enhanced UV-B radiation but the limited data available on the effect of combined elevated CO2 and ultraviolet B (280–320 nm) (UV-B) radiation allow no general conclusion. CO2-induced increase of growth rate can be markedly modified at elevated UV-B radiation. Plant responses to elevated atmospheric CO2 and other environmental factors such as soil salinity and UV-B tend to be species-specific, because plant species differ in sensitivity to salinity and UV-B radiation, as well as to other environmental stress factors (drought, nutrient deficiency). Therefore, the effects of joint elevated atmospheric CO2 and increased soil salinity or elevated CO2 and enhanced UV-B to plants are physiologically complex.  相似文献   

16.
Water repellency is a widespread characteristic of soils that can modify soil moisture content and distribution and is implicated in important processes such as aggregation and carbon sequestration. Repellency arises as a consequence of organic matter inputs; as elevated atmospheric CO2 is known to modify such inputs, we tested the repellency of a grassland soil after 5 years of exposure to elevated CO2 in a free air carbon dioxide enrichment experiment. Using a water droplet penetration time test, we found a significant reduction in repellency at elevated CO2 in samples at field moisture content. As many of the processes potentially influenced by repellency have been shown to be modified at elevated CO2 (e.g. soil aggregation, C sequestration, recruitment from seed), we suggest that further exploration of this phenomenon could enhance our understanding of CO2 effects on ecosystem function. The mechanism responsible for the change in repellency has not been identified.  相似文献   

17.
We measured soil CO2 flux over 19 sampling periods that spanned two growing seasons in a grassland Free Air Carbon dioxide Enrichment (FACE) experiment that factorially manipulated three major anthropogenic global changes: atmospheric carbon dioxide (CO2) concentration, nitrogen (N) supply, and plant species richness. On average, over two growing seasons, elevated atmospheric CO2 and N fertilization increased soil CO2 flux by 0.57 µmol m?2 s?1 (13% increase) and 0.37 µmol m?2 s?1 (8% increase) above average control soil CO2 flux, respectively. Decreases in planted diversity from 16 to 9, 4 and 1 species decreased soil CO2 flux by 0.23, 0.41 and 1.09 µmol m?2 s?1 (5%, 8% and 21% decreases), respectively. There were no statistically significant pairwise interactions among the three treatments. During 19 sampling periods that spanned two growing seasons, elevated atmospheric CO2 increased soil CO2 flux most when soil moisture was low and soils were warm. Effects on soil CO2 flux due to fertilization with N and decreases in diversity were greatest at the times of the year when soils were warm, although there were no significant correlations between these effects and soil moisture. Of the treatments, only the N and diversity treatments were correlated over time; neither were correlated with the CO2 effect. Models of soil CO2 flux will need to incorporate ecosystem CO2 and N availability, as well as ecosystem plant diversity, and incorporate different environmental factors when determining the magnitude of the CO2, N and diversity effects on soil CO2 flux.  相似文献   

18.
The pCO2 distribution in thesurface waters of the Elbe estuary and German Bight was investigated during high river discharge in April 1997. pCO2 values of about 1100 atm foundin the upper part of the estuary are, comparedto other European rivers, only moderate. In theouter estuary, the enhanced river dischargecreates a pronounced river plume reflected in decreased surface salinity.However, pCO2 in this area(250 atm) is below atmospheric values dueto primary production. Comparison with resultswe obtained during other measuringcampaigns shows that in the outer estuarysupersaturation of CO2 with respect to theatmosphere occurs only in early spring duringthe time of highest river discharge. In latespring and summer, intensive primary productionwithin the surface layer leads to a pronouncedundersaturation (141 atm), despite atemperature increase of more than 20 °Cfrom winter to summer. Undersaturation isenforced by stable stratification of the watercolumn during the productive seasons thatdiminishes the entrainment of CO2from below the thermocline into the surfacewater. In winter, CO2 is close toequilibrium with the atmosphere and controlledby physical processes. Our data suggest thatthe Elbe estuary represents a sink foratmospheric CO2 over the investigatedseasons and that carbon cycling in this areais dominated by biological processes.  相似文献   

19.
Rising atmospheric carbon dioxide concentration ([CO2]) significantly influences plant growth, development, and biomass. Increased photosynthesis rate, together with lower stomatal conductance, has been identified as the key factors that stimulate plant growth at elevated [CO2] (e[CO2]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO2] is always associated with post‐photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions, and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO2], despite the emerging evidence of e[CO2]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO2] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO2] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO2] have been identified with the aim of improving crop productivity under a CO2 rich atmosphere.  相似文献   

20.
The effect of CO2 enrichment (700 and 1050 ppm) on phytomass, soluble sugars, leaf nitrogen and secondary chemicals of three Salix myrsinifolia clones was studied in plants cultivated at very poor (sand seedlings) and moderate (peat seedlings) nutrient availability and under low illumination. The total shoot phytomass production of sand scedlings was less than 10% of that of the peat seedlings. Carbon dioxide increased the total shoot phytomass of peat seedlings. When the ambient carbon supply was doubled (to 700 ppm) the growth of sand seedlings was slightly enhanced but 1050 ppm CO2 gave growth figures similar to those at the control CO2 level. Leaf nitrogen content and total soluble sugar contents were significantly higher in peat seedlings than in sand seedlings. Leaf nitrogen showed a decreasing trend in relation to CO2 increase. On the other hand, CO2 did not have any clear-cut effect on total sugars. At the control CO2 level the content of salicortin, which is a dynamic phenolic, was higher in the peat seedlings than in the sand seedlings, but salicin showed the opposite trend. CO2 enrichment considerably decreased these phenolics in the peat seedlings. At the control CO2 level, the content of more static phenolics, such as proanthocyanidins, was higher in sand seedlings. An increased carbon supply considerably increased static phenolics in the peat seedlings. Willow defence against generalist herbivores is moderately decreased by enhancement of atmospheric carbon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号