首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new soil isolate, tentatively identified as Rhodococcus equi TG328, was found to be effective in the production of S-(+)-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile. The conversion is catalysed by two enzymes. First, a nitrile hydratase converts the (R,S)-nitrile to (R,S)-2-phenylpropionamide. Second, a stereoselective amidase converts the S-(+)-amide to S-(+)-2-phenylpropionic acid. Conditions for optimal enzyme production and accumulation of S-(+)-2-phenylpropionic acid by resting cells were studied. The reaction of resting cells for 30 h at 10° C with (R,S)-2-phenylpropionitrile resulted in the production of 100 g of S-(+)-2-phenylpropionic acid per litre of reaction mixture. The enantiometric excess of the purified S-(+)-2-phenylpropionic acid was 99.4%. The amount of S-(+)-2-phenylpropionic acid accumulated was enhanced by lower reaction temperatures. In addition, unreacted R-(–)-2-phenylpropionamide with 99.0% enantiometric excess was isolated. Correspondence to: T. Nagasawa  相似文献   

2.
The separation of (±) -2,2-dimethyl-3- (3′,4′-methylenedioxyphenyl) -cyclopropane-1-carboxylic acid into the geometrical isomers and the assignment of their configurations were achieved. Of the two isomers, the (±) -trans-acid, which was found more toxic when esterified with (±) -allethrolone, was resolved by means of an optically active α-phenylethylamine salt into (+) - and (-) -enantiomers. (IR:3R) -Configuration was assigned to the (+) -trans-acid and (IS:3S) -configuration to the (-) -trans-acid. The bioassay revealed that the (±) -allethrolone ester with the (+) -trans-acid, which belongs to the same optical series as the natural chrysanthemum acids, was the most toxic against common houseflies, as was the case with other pyrethroids.  相似文献   

3.
The enantioselective hydrolysis of (R,S)-3-acetoxymethyl-7,8-difluoro-2,3-dihydro-4H-[1,4]benzoxazine (I) with enzymes was investigated. Optically active I and its hydrolyzate, 7,8-difluoro-2,3-dihydro-3-hydroxymethyl-4H-[1,4]benzoxazine (II), are the intermediates for preparing optically active ofloxacins, whose racemate is known to be an excellent antibacterial agent. Lipoprotein lipase from Pseudomonas fluorescens (LPL Amano 3) was found to predominantly hydrolyze (S)-I, giving (R)-I in 54% e.e. and (R)-II in 44% e.e. On the other hand, lipase from Candida cylindracea was found to predominantly hydrolyze (R)-I, giving (S)-I in 24% e.e. and (S)-II in 20% e.e. Since, the optical purities of I and II thus obtained were not particularly high, these optically active I and II were converted into 3-acetoxymethyl-7,8-difluoro-2,3-dihydro-4-(3,5-dinitrobenzoyl)-4H-[1,4]benzoxazine (IV). After recrystallizing IV from ethyl acetate-hexane, (S)- and (R)-II were obtained with high enantiomeric excess by removing the crystallized racemic IV and subsequently hydrolyzing the resulting optically active IV with alkali. The reduction of II afforded 7,8-difluoro-2,3-dihydro-3-methyl-4H-[1,4]benzoxazine (III), for which the optical purity was estimated to be >96%e.e. by HPLC analysis. (R)- and (S)-ofloxacin were prepared from (R)- and (S)-III with retention of their configuration.  相似文献   

4.
An asymmetric hydrogen-transfer biocatalyst consisting of mutated Rhodococcus phenylacetaldehyde reductase (PAR) or Leifsonia alcohol dehydrogenase (LSADH) was applied for some water-soluble ketone substrates. Among them, 4-hydroxy-2-butanone was reduced to (S)/(R)-1,3-butanediol, a useful intermediate for pharmaceuticals, with a high yield and stereoselectivity. Intact Escherichia coli cells overexpressing mutated PAR (Sar268) or LSADH were directly immobilized with polyethyleneimine or 1,6-diaminehexane and glutaraldehyde and evaluated in a batch reaction. This system produced (S)-1,3-butanediol [87% enantiomeric excess (e.e.)] with a space time yield (STY) of 12.5 mg h−1 ml−1 catalyst or (R)-1,3-butanediol (99% e.e.) with an STY of 60.3 mg h−1 ml−1 catalyst, respectively. The immobilized cells in a packed bed reactor continuously produced (R)-1,3-butanediol with a yield of 99% (about 49.5 g/l) from 5% (w/v) 4-hydroxy-2-butanoate over 500 h.  相似文献   

5.
The direct resolution and quantitation of (R)- and (S)-disopyramide, isolated from human plasma, was accomplished using a chiral α1-acid glycoprotein column. A LiChrosorb RP-2 column (50 × 3.0 mm I.D.) was used as a precolumn. Phosphate buffer, pH 6.20, containing 2-propanol and N,N-dimethyloctylamine was used as mobile phase, expressed as the relative standard deviation, was 1.8% and 3.3% for (R)- and (S)-disopyramide, respectively, at a drug level of 0.5 μg/ml. In two subjects who received a single capsule of racemic disopyramide (150 mg), the plasma levels of the (R) isomer were about half those of the (S) isomer. The half-lives of (R)- and (S)-disopyramide were similar.  相似文献   

6.
An efficient simultaneous synthesis of enantiopure (S)-amino acids and chiral (R)-amines was achieved using α/ω-aminotransferase (α/ω-AT) coupling reaction with two-liquid phase system. As, among the enzyme components in the α/ω-AT coupling reaction systems, only ω-AT is severely hampered by product inhibition by ketone product, the coupled reaction cannot be carried out above 60 mM substrates. To overcome this problem, a two-liquid phase reaction was chosen, where dioctylphthalate was selected as the solvent based upon biocompatibility, partition coefficient and effect on enzyme activity. Using 100 mM of substrates, the AroAT/ω-AT and the AlaAT/ω-AT coupling reactions asymmetrically synthesized (S)-phenylalanine and (S)-2-aminobutyrate with 93% (>99% eeS) and 95% (>99% eeS) of conversion yield, and resolved the racemic α-methylbenzylamine with 56% (95% eeR) and 54% (96% eeR) of conversion yield, respectively. Moreover, using 300 mM of 2-oxobutyrate and 300 mM of racemic α-methylbenzylamine as substrates, the coupling reactions yielded 276 mM of (S)-2-aminobutyrate (>99% ee) and 144 mM of (R)-α-methylbenzylamine (>96% ee) in 9 h. Here, most of the reactions take place in the aqueous phase, and acetophenone mainly moved to the organic phase according to its partition coefficient.  相似文献   

7.
Biological asymmetric hydrolysis of ethyl (±)-cycloheptadienecarboxylate with Rhodotorula minuta var. texensis IFO 1102 and chemical resolution of the corresponding carboxylic acid with (?)-quinine provided (R)-(+)-ethyl 2,5-cycloheptadienecarboxylate (78% e.e.) and (S)-(+)-2,5-cycloheptadienecarboxylic acid (95% e.e.), respectively. The (R)-(+)-carboxylate was converted to (R)-(?)-2,5-cycloheptadienylcarbaldehyde and the (S)-(+)-carboxylic acid to (S)-(+)-2,5-cycloheptadienylcarbaldehyde. Ectocarpene (78% e.e.), male-gamete attractant of marine brown alga, and its antipode (95% e.e.) were synthesized by stereoselective Wittig reaction between the (R)-(?)- and (S)-(+)-aldehydes and propyltriphenylphosphonium bromide in a liquid-solid two phase system using 18-crown ether-t-BuOK, respectively.  相似文献   

8.
(±)-Tricarbonyl(η5-1-formyl-2-methylcyclopentadienyl)manganese (1) was optically resolved with horse liver alcohol dehydrogenase (HLADH) and two species of yeasts, Saccharomyces sp. H-1 and Rhodotorula rubra IFO 889. Usually, (1R)-1 was preferentially reduced to give (?)-alcohol 2 of ≥ 97% e.e. ? 84% e.e. Ketone analogue (±)-tricarbonyl(η5-1-acetyl-2-methylcyclopentadienyl)-manganese (4) was reduced by the yeasts. The major product by S. sp. H-1 was the (1S,2R,1′S)-(+)-alcohol (5) (≥ 98% e.e.) and the minor product, the (1R,2S,1′S)-(?)-alcohol (6) (86% e.e.). R. rubra gave only the latter alcohol (≥ 99 % e.e.). The Stereodifferentiation mechanism for these bioreductions is discussed in terms of the Prelog rule. The mechanism for HLADH reduction was examined with computer graphics.  相似文献   

9.
Summary A chiral compound [4R-[4,6ß(E)]]-6-[4,4-bis(4-fluorophenyl)-3-(1-methyl-1H-tetrazol-5-yl)-1,3-butadienyl]-tetrahydro-4-hydroxy-2H-pyran-2-one (R-(+)-1) was prepared by the lipase-catalysed stereoselective acetylation of racemic 1 in an organic solvent. Chiral R-(+)-1 is a hydroxymethyl glutaryl coenzyme A (HMG CoA) reductase inhibitor and a potential anticholesterol drug candidate. Among various lipases evaluated, lipase PS-30 from Pseudomonas species efficiently catalysed acetylation of the undesired enantiomer of racemic 1 to yield the S-(–)-acetylated product 2 and unreacted desired R-(+)-1. A reaction yield of 48 mol% and an optical purity of 98% were obtained for R-(+)-1 when the reaction was conducted in toluence as solvent in the presence of isopropenyl acetate as acyl donor. Lipase PS-30 was immobilized on Accurel polypropylene (PP) and the immobilized enzyme was reused (five cycles) in the acetylation reaction without loss of enzyme activity, productivity, or optical purity of the R-(+)-1. The enzymatic acetylation process was scaled-up to 501 and a 640-l volume (preparative batches) at a substrate concentration of 4 g/l. R-(+)–1 was recovered from the preparative batches in 68–71% recovery yield with 98.5% gas chromatography homogeneity index and 98.5% optical purity. The S-(–) acetate 2 produced by the acetylation reaction was enzymatically hydrolysed by lipase PS-30 in a biphasic system to prepare the corresponding S-(–)-1.Correspondence to: R. N. Patel  相似文献   

10.
An enzyme that reduces benzoylformate with NADH to form (R)-mandelate was extracted from cells of Streptococcus faecalis IFO 12964 and purified to more than 95% purity as evidenced by gel electrophoresis. Physicochemical and enzymic properties were studied. From the substrate specificity, we concluded that the enzyme was a kind of (R)-2-hydroxyisocaproate dehydrogenase. Optically pure (R)-(—)-mandelic acid was prepared with the enzyme, NADH, and alcohol, formate or glucose dehydrogenase in 84~93% yield. Five (R)-2-hydroxyalkanoic acids (C4~C6) or their Ba salts, (R)-(+)-3-phenyllactic acid and (S)-(—)-3-chlorolactic acid were also prepared with the enzyme.  相似文献   

11.
(2RS,3SR)-2-Amino-3-chlorobutanoic acid hydrochloride [(2RS,3SR)-ACB · HCl] was found to exist as a conglomerate based on the melting point, infrared spectrum, and solubility. Optical resolution by preferential crystallization of (2RS,3SR)-ACB · HCl was achieved to yield both (2R,3S)- and (2S,3R)-ACB · HCl of 80–100% optical purities. The obtained (2R,3S)- and (2S,3R)-ACB · HCl were recrystallized, taking into account the solubility of (2RS,3SR)-ACB · HCl, to give efficiently optically pure (2R,3S)- and (2S,3R)-ACB · HCl. Treatment of the purified (2R,3S)- and (2S,3R)-ACB · HCl with triethylamine gave optically pure (2R,3S)- and (2S,3R)-2-amino-3-chlorobutanoic acid, respectively. Chirality 9:656–660, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The first synthesis of an optically pure (2R,3R,4S)-hydantoin 2, analogue of (2S,3R,4S)-4-hydroxyisoleucine, was achieved in two steps in un-optimized 35% overall yield from previously reported aldehyde synthon 1. (2R,3R,4S)-Hydantoin is stable at acidic pH. This solves the major drawback of (2S,3R,4S)-4-hydroxyisoleucine that easily cyclizes into inactive lactone. Furthermore, (2R,3R,4S)-hydantoin stimulates the insulin secretion by 150% at 25 μM compared with 4-hydroxyisoleucine and insulin secretagogue drug repaglinide. In view of its stability and biological activity, (2R,3R,4S)-hydantoin represents a good candidate for type-2 diabetes management and control.  相似文献   

13.
The stereochemical inversion of (R)-5-hydroxymethyl-3-tert-butyl-2-oxazolidinone (la) or (R)-5-hydroxymethyl-3-isopropyl-2-oxazolidinone (lb) to the corresponding (S)-isomer was accomplished via a key intermediate, (R)-3-N-ethoxycarbonyl-N-tert-butylamino-l,2-epoxypropane (5a) or (R)-3-N-ethoxycarbonyl-N-isopropylamino-l,2-epoxypropane (5b), in a high enantiomeric excess. (S)-la (99%e.e.) or (S)-lb (91%e.e.) was thus obtained from the respective (R)-isomer (la; 99%e.e., lb; 95%e.e.).  相似文献   

14.
(S)-1-(2-Naphthyl)ethanol was yielded by immobilized pea (Pisum sativum L.) protein (IPP) from (R, S) 2-naphthyl ethanol (>99% ee, yield; about 50%), in which the (R)-enantiomer was selectively oxidized to 2-acetonaphthone. IPP could be reused consecutively at least three times without any decrease of yield and optical purity.  相似文献   

15.
Asymmetric hydrolysis of acetate (10) of (±)-t-2,t-4-dimethyl-r-l-cyclohexanol with Bacillus subtilis var. niger gave (?)-(lS,2S,4S)-2,4-dimethyl-l-cyclohexanol (6a) and (+)-(1R,2R,4R)-acetate (10b) with high optical purities. Optically pure (?) and (+)-alcohols (6a and 6b) were prepared via corresponding 3,5-dinitrobenzoates. Oxidation of alcohols (6a and 6b) with chromic acid gave optically pure (?)-(2S,4S) and (+)-(2R,4R)-2,4-dimethyl-l-cyclohexanones (2a and 2b), respectively.  相似文献   

16.
Limonene-1,2-epoxide hydrolase (LEH) from Rhodococcus erythropolis DCL14, an enzyme involved in the limonene degradation pathway of this microlorganism, has a narrow substrate specificity. Of the compounds tested, the natural substrate, limonene-1,2-epoxide, and several alicyclic and 2-methyl-1,2-epoxides (e.g. 1-methylcyclohexene oxide and indene oxide), were substrates for the enzyme. When LEH was incubated with a diastereomeric mixture of limonene-1,2-epoxide, the sequential hydrolysis of first the (1R,2S)- and then the (1S,2R)-isomer was observed. The hydrolysis of (4R)- and (4S)-limonene-1,2-epoxide resulted in, respectively, (1S,2S,4R)- and (1R,2R,4S)-limonene-1,2-diol as the sole product with a diastereomeric excess of over 98%. With all other substrates, LEH showed moderate to low enantioselectivities (E ratios between 34 and 3).  相似文献   

17.
(+)-Isopiperitenone (100 mg l–1) was converted into (4S,6R)-6-hydroxy- and (4S,8R)-8,9-epoxyisopiperitenone, aside from the already known (+)-7-hydroxyisopiperitenone, by suspension cell culture of Mentha piperita. As (–)-isopiperitenone was hydroxylated similarly, this implies that the hydroxylating enzyme(s) have a broad substrate stereospecificity in regards to the stereochemistry at C4. (–)-(4R)-Carvone was reduced by the Mentha cells both at carbonyl and C1-C6 double bond to give (1R,2S,4R)-neodihydrocarveol and (1R,2R,4R)-dihydrocarveol with the former being the major product. (+)-(4S)-Carvone had a similar reduction pattern, producing (1S,2R,4S)-neodihydrocarveol and (1S,4S)-dihydrocarvone. Formation of these compounds indicates that the peppermint cell culture cannot only hydroxylate the allylic position but also reduce the ,-unsaturated carbonyl system.  相似文献   

18.
Within the framework of a large-scale screening carried out on 146 yeasts of environmental origin, 16 strains (11% of the total) exhibited the ability to biotransform (4S)-(+)-carvone. Such positive yeasts, belonging to 14 species of 6 genera (Candida, Cryptococcus, Hanseniaspora, Kluyveromyces, Pichia and Saccharomyces), were thus used under different physiological state (growing, resting and lyophilised cells). Yields (expressed as% of biotransformation) varied from 0.14 to 30.04%, in dependence of both the strain and the physiological state of the cells. Products obtained from reduction of (4S)-(+)-carvone were 1S,4S- and 1R,4S-dihydrocarvone, (1S,2S,4S)-, (1S,2R,4S)- and (1R,2S,4S)-dihydrocarveol. Only traces of (1R,2R,4S)-dihydrocarveol were observed in a few strains. As far as the stereoselectivity of the biocatalysis, with the sole exception of a few strains, the use of yeasts determined the prevalent accumulation of 1S,4S-isomers [(1S,4S)-dihydrocarvone + (1S,2S,4S)-dihydrocarveol + (1S,2R,4S)-dihydrocarveol].The addition of glucose (acting as auxiliary substrate for cofactor-recycling system) to lyophilised yeast cells determined a considerable increase of biocatalytic activity: in particular, two strains showed a surprising increase of the% of biotransformation of (4S)-(+)-carvone (to values >98%).  相似文献   

19.
Previously we have demonstrated the reduction of ethyl and t-butyl diketoesters 1 to the corresponding syn-(3R,5S)-dihydroxy esters 2a by Acinetobacter sp. 13874. The syn-(3R,5S)-dihydroxy ester 2a was obtained with an enantiomeric excess (e.e.) of 99% and a diastereomeric excess (de) of 63%. In this report, we identified a gene encoding desired ketoreductase III which catalyzed the diastereoselective reduction of diketoesters 1 to syn-(3R,5S)-dihydroxy esters 2a and describe cloning and expression of ketoreductase III into Escherichia coli. Cells or extracts of recombinant E. coli efficiently reduced the diketoester 1 to the corresponding syn-(3R,5S)-dihydroxy ester 2a in 99.3% yield, 100% e.e., and 99.8% de.  相似文献   

20.
The ability to produce (R)- or (S)-β-phenylalanine ethyl ester (3-amino-3-phenylpropionic acid ethyl ester, BPAE) from racemic BPAE through stereoselective hydrolysis was screened for in BPAE-assimilating microorganisms. Sphingobacterium sp. 238C5 and Arthrobacter sp. 219D2 were found to be potential catalysts for (R)- and (S)-BPAE production, respectively. On a 24-h reaction, with 2.5% (w/v) racemic BPAE (130 mM) as the substrate and wet cells of Sphingobacterium sp. 238C5 as the catalyst, 1.15% (w/v) (R)-BPAE (60 mM) with enantiomeric purity of 99% e.e. was obtained, the molar yield as to racemic BPAE being 46%. On a 48-h reaction, with 2.5% (w/v) racemic BPAE (130 mM) as the substrate and wet cells of Arthrobacter sp. 219D2 as the catalyst, 0.87% (w/v) (S)-BPAE (45 mM) with enantiomeric purity of 99% e.e. was obtained, the molar yield as to racemic BPAE being 35%. The enzyme stereoselectively hydrolyzing (S)-BPAE was purified to homogeneity from the cell-free extract of Sphingobacterium sp. 238C5. The enzyme was a monomeric protein with a molecular mass of about 42,000. The enzyme catalyzed hydrolysis of β-phenylalanine esters, while the common aliphatic and aromatic carboxylate esters were not catalyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号