首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Involvement of CRF on the anorexic effect of GLP-1 in layer chicks   总被引:1,自引:0,他引:1  
Glucagon-like peptide-1 (GLP-1) is recognized as an anorexic peptide in the brain of chicks. However, the mechanism underlying the inhibition of feeding has not been well studied. It is reported that GLP-1 activates neurons containing corticotrophin-releasing factor (CRF) in the brain of mammals. Since CRF is also an anorexic peptide, it is possible that the anorexic effect of GLP-1 is mediated by CRF in chicks. The present study was carried out to test this. First, we determined plasma corticosterone (CORT) concentrations after intracerebroventricular (ICV) injection of GLP-1 and found that this treatment increased CORT release in layer chicks. The CORT-releasing effect was partly attenuated by co-injection of astressin, a CRF receptor antagonist, demonstrating that GLP-1 stimulated CORT secretion by activation of CRF neurons. CRF neurons also appear to be involved in mediating the inhibition of food intake by GLP-1 because this effect was also partly attenuated by astressin. Furthermore, we demonstrated that the anorexic effect of GLP-1 was weaker in broiler than layer chicks. The present results suggest that the anorexic effect of GLP-1 might be mediated by CRF neurons in the chick brain and that the sensitivity of the inhibitory response to GLP-1 differs between chick strains.  相似文献   

2.
The anorexigenic effect of cholecystokinin (CCK) is well documented in mammals, but documentation in neonatal chicks is limited. Thus, the present study investigated the mechanism underlying the anorexigenic effect of CCK in neonatal chicks. Intraperitoneal (IP) injection of sulfated CCK(26-33) (CCK8S) significantly decreased food intake in chicks at 60 and 300 nmol/kg. Non-sulfated CCK(26-33) (CCK8) also significantly decreased food intake, but its anorexigenic effect was observed only at the highest dose (300 nmol/kg) and short-lived. However, CCK(30-33) (CCK4) had no effect on food intake. Also, the intracerebroventricular (ICV) injection of CCK8S (0.2 and 1 nmol) significantly decreased food intake in chicks. Similar to IP administration, the anorexigenic effect of CCK8 was weak and CCK4 did not affect food intake. IP and ICV injections of CCK8S caused conditioned aversion and increased plasma corticosterone concentrations, suggesting that their anorexigenic effects might be related to stress and/or malaise. This might be true in ICV-injected CCK8S because co-injection of astressin, a corticotropin-releasing hormone receptor antagonist, tended to attenuate the effect of CCK8S. The present study revealed that N-terminal amino acids and the sulfation of Tyr are important for the anorexigenic effect of CCK8S after IP and ICV administered in chicks. Additionally, the effect of central CCK8S might be related to stress and/or malaise.  相似文献   

3.
It is known that, in rats, central and peripheral ghrelin increases food intake mainly through activation of neuropeptide Y (NPY) neurons. In contrast, intracerebroventricular (ICV) injection of ghrelin inhibits food intake in neonatal chicks. We examined the mechanism governing this inhibitory effect in chicks. The ICV injection of ghrelin or corticotropin-releasing factor (CRF), which also inhibits feeding and causes hyperactivity in chicks. Thus, we examined the interaction of ghrelin with CRF and the hypothalamo-pituitary-adrenal (HPA) axis. The ICV injection of ghrelin increased plasma corticosterone levels in a dose-dependent or a time-dependent manner. Co-injection of a CRF receptor antagonist, astressin, attenuated ghrelin-induced plasma corticosterone increase and anorexia. In addition, we also investigated the effect of ghrelin on NPY-induced food intake and on expression of hypothalamic NPY mRNA. Co-injection of ghrelin with NPY inhibited NPY-induced increase in food intake, and the ICV injection of ghrelin did not change NPY mRNA expression. These results indicate that central ghrelin does not interact with NPY as seen in rodents, but instead inhibits food intake by interacting with the endogenous CRF and its receptor.  相似文献   

4.
Intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits food intake in goldfish, unlike in rodents, suggesting that its anorexigenic action is mediated by alpha-melanocyte-stimulating hormone (alpha-MSH) but not corticotropin-releasing hormone. This led us to investigate whether MCH-containing neurons in the goldfish brain have direct inputs to alpha-MSH-containing neurons, using a confocal laser scanning microscope, and to examine whether the anorexigenic action of MCH is also mediated by other anorexigenic neuropeptides, such as cholecystokinin (CCK) and pituitary adenylate cyclase-activating polypeptide (PACAP), using their receptor antagonists. MCH- and alpha-MSH-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. MCH-containing nerve fibers or endings lay in close apposition to alpha-MSH-containing neurons in the hypothalamus in the posterior part of the nucleus lateralis tuberis (NLTp). The inhibitory effect of ICV-injected MCH on food intake was not affected by treatment with a CCK A/CCK B receptor antagonist, proglumide, or a PACAP receptor (PAC(1) receptor) antagonist, PACAP((6-38)). ICV administration of MCH at a dose sufficient to inhibit food consumption also did not influence expression of the mRNAs encoding CCK and PACAP. These results strongly suggest that MCH-containing neurons provide direct input to alpha-MSH-containing neurons in the NLTp of goldfish, and that MCH plays a crucial role in the regulation of feeding behavior as an anorexigenic neuropeptide via the alpha-MSH (melanocortin 4 receptor)-signaling pathway.  相似文献   

5.
The purpose of the present study was to determine whether central administration of substance P (SP), a tachykinin neuropeptide, influenced feeding behavior in layer chicks (Gallus gallus). Intracerebroventricular (ICV) injections of 5 nmol SP decreased food intake in 5- and 6-day-old chicks under both ad libitum and 3-h fasting conditions. There are 3 major subtypes of tachykinin receptors, namely, neurokinin 1, 2 and 3 receptors. Injection of neurokinin A and neurokinin B, which are respectively endogenous agonists for neurokinin 2 and 3 receptors, did not suppress feeding behavior in chicks, suggesting that the anorexigenic effect of SP might be mediated by the neurokinin 1 receptor rather than neurokinin 2 and 3 receptors. Chicks that received 5 nmol SP did not change their locomotion, standing, sitting or drinking time, suggesting that its anorexigenic action might not be due to SP-induced hyperactivity or sedation. ICV injection of SP increased water intake, also indicating that SP likely did not affect feeding behavior through malaise. In addition, the anorexigenic effect of SP might not be related to corticotrophin-releasing hormone (CRH) because plasma corticosterone concentration was not affected by ICV injection of SP and co-administration of the CRH receptor antagonist astressin did not affect the anorexigenic effect of SP. The present study suggests that central SP acts as an anorexigenic neuropeptide in chicks.  相似文献   

6.
Alpha-melanocyte-stimulating hormone (alpha-MSH) is recognized as an anorexic peptide in the brain of vertebrates, but its mechanism of action has not been identified in birds. Therefore, we investigated whether the anorexic effect of alpha-MSH is mediated by corticotrophin-releasing factor (CRF) in the domestic chick. Firstly, we found that intracerebroventricular (i.c.v.) injection of alpha-MSH dose dependently increased plasma corticosterone (CORT) concentration. This effect was partly attenuated by co-injection of astressin, a CRF receptor antagonist, demonstrating that alpha-MSH stimulated CORT secretion by activating CRF neurons. The alpha-MSH-elicited CORT release was not attenuated by the injection of agouti-related protein, an endogenous melanocortin-4 (MC4) receptor antagonist, suggesting that alpha-MSH stimulated CRF neurons through MC4 receptor-independent pathways. Finally, we found that the anorexic effect of alpha-MSH was partly attenuated by astressin. The present results suggest that the anorexic effect of alpha-MSH in the chick brain is mediated in part by activation of CRF neurons.  相似文献   

7.
Glucagon-related peptides such as glucagon, glucagon-like peptide-1, and oxyntomodulin suppress food intake in mammals and birds. Recently, novel glucagon-like peptide (GCGL) was identified from chicken brain, and a comparatively high mRNA expression level of GCGL was detected in the hypothalamus. A number of studies suggest that the hypothalamus plays a critical role in the regulation of food intake in mammals and birds. In the present study, we investigated whether GCGL is involved in the central regulation of food intake in chicks. Male 8-day-old chicks (Gallus gallus) were used in all experiments. Intracerebroventricular administration of GCGL in chicks significantly suppressed food intake. Plasma glucose level was significantly decreased by GCGL, whereas plasma corticosterone level was not affected. Central administration of a corticotrophin-releasing factor (CRF) receptor antagonist, α-helical CRF, attenuated GCGL-suppressed food intake. It seems likely that CRF receptor is involved in the GCGL-induced anorexigenic pathway. All our findings suggest that GCGL functions as an anorexigenic peptide in the central nervous system of chicks.  相似文献   

8.
Nitric oxide (NO) is known as an orexigenic factor in the brain of mammals and mediates the feeding-stimulatory effect of other factors such as neuropeptide Y (NPY). In neonatal chicks, however, we recently reported that NO might have an anorexigenic effect and suggested that the feeding-regulatory mechanism in chicks might be different from that in mammals regarding NO. In the present study, we investigated the involvement of NO in the effect of other orexigenic and anorexigenic factors in neonatal chicks. Intracerebroventricular co-injection of N(G)-nitro-l-arginine methyl ester (l-NAME), a NO synthase inhibitor, did not affect NPY- and prolactin-releasing peptide-induced feeding behavior. On the other hand, the co-injection of l-NAME significantly attenuated the anorexigenic effect of corticotropin-releasing hormone (CRH). The anorexigenic effects of glucagon-like peptide-1, alpha-melanocyte-stimulating hormone and ghrelin were not affected by the l-NAME treatment. These results suggest that NO might mediate the anorexigenic effect of CRH in the brain of neonatal chicks.  相似文献   

9.
Gonadotropin-inhibiting hormone (GnIH) is a newly discovered hypothalamic hormone which suppresses gonadotropin synthesis and release from the anterior pituitary. Recently, we found that intracerebroventricular (ICV) injection of GnIH stimulated feeding behavior of chicks (Gallus gallus) and suggested that GnIH is one of orexigenic peptides. However, the mechanism underlying the orexigenic effect is still unknown. In the present study, we examined whether the orexigenic effect of GnIH is related to opioid and nitric oxide (NO) systems. The orexigenic effect of ICV-injected GnIH was attenuated by co-injection of beta-funaltrexamine (an opioid mu-receptor antagonist) but not ICI-174,864 and nor-binaltorphimine (antagonists of opioid delta- and kappa-receptors, respectively). The co-injection of non-selective NO synthase inhibitor did not affect GnIH-induced feeding behavior. The present study demonstrated that the GnIH-induced feeding might be mediated by opioid mu-receptor in chicks.  相似文献   

10.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are the members of the glucagon superfamily and bind to common receptors while PACAP also acts via the PACAP-specific receptor, PAC1. The aim of the present study was to investigate whether intracerebroventricular (i.c.v.) injection of VIP and PACAP acts in a similar or different manner to affect body temperature and energy expenditure in the domestic chick. I.c.v. injection of VIP did not significantly affect rectal temperature, but decreased energy expenditure. On the other hand, i.c.v. injection of PACAP significantly increased both body temperature and energy expenditure. These specific actions of PACAP could be explained by an interaction with the PAC1 receptor, since they were partly, but not entirely, attenuated by PACAP (6-38), a PAC1 receptor antagonist. In addition, it was observed that central administration of both VIP and PACAP induced a reduction in respiratory quotient and increased plasma non-esterified fatty acid concentrations. This suggests that both peptides act centrally to regulate a catabolic response. In summary, brain VIP and PACAP both appear to exert generally catabolic effects on energy metabolism in the chick, but their influence on body temperature and glucose metabolism differs and their central effects do not appear to be mediated by the same receptors.  相似文献   

11.
12.
Maruyama K  Miura T  Uchiyama M  Shioda S  Matsuda K 《Peptides》2006,27(7):1820-1826
Our recent research has indicated that intracerebroventricular (ICV) injection of pituitary adenylate cyclase-activating polypeptide (PACAP) suppresses food intake and locomotor activity in the goldfish. However, the anorexigenic mechanism of PACAP has not yet been clarified. The aim of this study was to investigate the relationship between the anorexigenic action of PACAP and that of corticotropin-releasing hormone (CRH), which is implicated in the regulation of energy homeostasis as a powerful anorexigenic peptide in the goldfish brain. We first examined feeding-induced changes in the expression of CRH mRNA, and the effect of ICV administration of PACAP on the expression of CRH mRNA in the goldfish brain. Semiquantitative analysis revealed that the expression of CRH mRNA was significantly increased by excessive feeding for 7 days. ICV administration of PACAP at a dose sufficient to suppress food intake induced a significant increase in the expression of CRH mRNA. We also examined the effect of alpha-helical CRH(9-41), a CRH antagonist, on the anorexigenic action of PACAP in the goldfish. The inhibitory effect of PACAP was completely suppressed by treatment with alpha-helical CRH(9-41). We finally investigated the effect of ICV-administered CRH on locomotor activity in the goldfish. CRH at a dose sufficient to suppress food intake induced a significant increase in locomotor activity, unlike ICV-injected PACAP. These results suggest that, in the goldfish, the anorexigenic action of PACAP is related to the CRH neuronal pathway, but that the modulation of locomotor activity by PACAP is independent of modulation by CRH.  相似文献   

13.
Caloric deprivation inhibits reproduction, including copulatory behaviors, in female mammals. Decreases in metabolic fuel availability are detected in the hindbrain, and this information is relayed to the forebrain circuits controlling estrous behavior by neuropeptide Y (NPY) projections. In the forebrain, the nutritional inhibition of estrous behavior appears to be mediated by corticotropin-releasing factor (CRF) or urocortin-signaling systems. Intracerebroventricular (ICV) infusion of the CRF antagonist, astressin, prevents the suppression of lordosis by food deprivation and by NPY treatment in Syrian hamsters. These experiments sought to determine which CRF receptor type(s) is involved. ICV infusion of the CRF receptor subtype CRFR2-selective agonists urocortin 2 and 3 (UCN2, UCN3) inhibited sexual receptivity in hormone-primed, ovariectomized hamsters. Furthermore, the CRFR2-selective antagonist, astressin 2B, prevented the inhibition of estrous behavior by UCN2 and by NPY, consistent with a role for CRFR2. On the other hand, astressin 2B did not prevent the inhibition of behavior induced by 48-h food deprivation or ICV administration of CRF, a mixed CRFR1 and CRFR2 agonist, suggesting that activation of CRFR1 signaling is sufficient to inhibit sexual receptivity in hamsters. Although administration of CRFR1-selective antagonists (NBI-27914 and CP-154,526) failed to reverse the inhibition of receptivity by CRF treatment, we could not confirm their biological effectiveness in hamsters. The most parsimonious interpretation of these findings is that, although NPY inhibits estrous behavior via downstream CRFR2 signaling, food deprivation may exert its inhibition via both CRFR1 and CRFR2 and that redundant neuropeptide systems may be involved.  相似文献   

14.
Galanin is recognized as one of the orexigenic peptides in the brain of mammals and fishes. The amino acid sequence of chicken galanin and its distribution in the brain are similar to those of mammals, suggesting that the brain galanin might be related to feeding regulation in chicks. The purpose of the present study was to investigate whether intracerebroventricular (ICV) injection of galanin affected feeding behavior of chicks (Gallus gallus). The injection of galanin increased food intake of layer and broiler chicks. We also found that the galanin-induced feeding behavior was attenuated in layer chicks by the co-injection of yohimbine and beta-funaltrexamine, which are the antagonists of adrenergic alpha-2 receptor and opioid mu-receptor, respectively. It is therefore possible that the orexigenic effect of galanin is mediated by these receptors.  相似文献   

15.
Effects of intracerebroventricular (ICV) injection of corticotrophin releasing factor (CRF) on feed intake were evaluated in two lines of White Plymouth Rock chickens that have been selected from a common base population for high (HWS) or low (LWS) juvenile body weight. Both lines responded with reduced feed intake after ICV CRF; however, the threshold of response was lower in line LWS than HWS. Additionally, the effects of two receptor antagonists, astressin and alpha-helical CRF (9-41; alpha-CRF), and the effect of CRF fragment 6-33, (which displaces CRF from its binding protein), were evaluated in these lines. Although all three antagonists increased feed intake in line LWS but not line HWS, they attenuated the appetite-reducing effects of CRF only in line HWS. Peripheral plasma corticosterone concentrations after an acute stressor were higher in line LWS than in line HWS. These data support the thesis of correlated responses in the CRF system to selection for high or low juvenile body weight. These differences may contribute to differential feed intake, and hence altered body weights.  相似文献   

16.
The superior cervical ganglion (SCG) is a well-characterized model of neural development, in which several regulatory signals have been identified. Vasoactive intestinal peptide (VIP) has been found to regulate diverse ontogenetic processes in sympathetics, though functional requirements for high peptide concentrations suggest that other ligands are involved. We now describe expression and functions of pituitary adenylate cyclase-activating polypeptide (PACAP) during SCG ontogeny, suggesting that the peptide plays critical roles in neurogenesis. PACAP and PACAP receptor (PAC(1)) mRNA's were detected at embryonic days 14.5 (E14.5) through E17.5 in vivo and virtually all precursors exhibited ligand and receptor, indicating that the system is expressed as neuroblasts proliferate. Exposure of cultured precursors to PACAP peptides, containing 27 or 38 residues, increased mitogenic activity 4-fold. Significantly, PACAP was 1000-fold more potent than VIP and a highly potent and selective antagonist entirely blocked effects of micromolar VIP, consistent with both peptides acting via PAC(1) receptors. Moreover, PACAP potently enhanced precursor survival more than 2-fold, suggesting that previously defined VIP effects were mediated via PAC(1) receptors and that PACAP is the more significant developmental signal. In addition to neurogenesis, PACAP promoted neuronal differentiation, increasing neurite outgrowth 4-fold and enhancing expression of neurotrophin receptors trkC and trkA. Since PACAP potently activated cAMP and PI pathways and increased intracellular Ca(2+), the peptide may interact with other developmental signals. PACAP stimulation of precursor mitosis, survival, and trk receptor expression suggests that the signaling system plays a critical autocrine role during sympathetic neurogenesis.  相似文献   

17.
The endocannabinoids (ECBs) have diverse physiological functions including the regulation of food intake and metabolism. In mammals, ECBs regulate feeding primarily through the CB1 receptors within the brain whereas the CB2 receptors are primarily involved in the regulation of immune function by direct action on peripheral immune cells and central glia. The central effect of ECBs on feeding behavior has not been studied in non-mammalian species. Therefore, the present study investigated the effect of CB65, a selective CB2 receptors agonist, on food intake in the neonatal chicks. In addition, the effect of astressin, a CRF receptor antagonist, on CB65-induced food intake was also investigated. Intracerebroventricular injection of the CB65 (1.25 μg) increased the food intake at 30- and 60-min post-injection significantly as compared to the control group. Pretreatment with a selective CB2 receptor antagonist, AM630, but not astressin, significantly attenuated the CB65-induced food intake. These results suggested that CB2 receptor agonists act on the brain to induce food intake.  相似文献   

18.
Abstract: Two forms of pituitary adenylate cyclase-activating polypeptide (PACAP), the 38- and 27-amino-acid forms (PACAP38 and PACAP27, respectively), which share amino acid sequence homology with vasoactive intestinal peptide (VIP), were evaluated for their abilities to regulate sympathetic neuron catecholamine and neuropeptide Y (NPY) expression. PACAP38 and PACAP27 potently and efficaciously stimulated NPY and catecholamine secretion in primary cultured superior cervical ganglion (SCG) neurons; 100- to 1,000-fold higher concentrations of VIP were required to modulate secretion, suggesting that SCG neurons express the PACAP-selective type I receptor. PACAP38 elicited a sustained seven- to ninefold increase in the rate of NPY secretion and three-fold stimulation in the rate of catecholamine release. PACAP38 and PACAP27 produced parallel neuronal NPY and catecholamine release, but cellular levels of NPY and catecholamines were differentially regulated. Sympathetic neuron NPY content was decreased, whereas cellular total catecholamine levels were elevated by the PACAP peptides; total NPY and catecholamine levels (secreted plus cellular content) were increased. In concert with the increased total peptide and transmitter production, pro-NPY and tyrosine hydroxylase mRNA levels were elevated. Furthermore, PACAP38 was more efficacious than PACAP27 in regulating pro-NPY and tyrosine hydroxylase mRNA. SCG neuronal expression of mRNA encoding the type I PACAP receptor further supported the studies demonstrating that sympathetic neuronal levels of NPY and catecholamine content and secretion and mRNA are differentially regulated by the PACAP peptides.  相似文献   

19.
Secretin, a 27-amino acid neuropeptide, is a member of the glucagon/secretin/vasoactive intestinal polypeptide (VIP) superfamily of amphipathic peptides that elicits transient vasodilation in vivo. The purpose of this study was to determine whether association of human secretin with sterically stabilized phospholipid micelles (SSM) amplifies the vasorelaxant effects of the peptide in the peripheral microcirculation in vivo. We found that secretin in saline evoked significant concentration-dependent vasodilation in the intact hamster cheek pouch microcirculation (P < 0.05). This response was potentiated and prolonged significantly when secretin was associated with SSM (P < 0.05). Vasodilation evoked by secretin in saline and secretin in SSM was abrogated by VIP(10-28), a VIP receptor antagonist, but not by PACAP(6-38), a PACAP receptor antagonist, or Hoe140, a selective bradykinin B(2) receptor antagonist. Collectively, these data indicate that self-association of human secretin with SSM significantly amplifies peptide vasoreactivity in the intact peripheral microcirculation through activation of VIP receptors. We suggest that the vasoactive effects of human secretin in vivo are, in part, phospholipid-dependent.  相似文献   

20.
Dong Y  Tang TS  Lu CL  He C  Dong JB  Huang XY  Sun FZ  Bao X 《生理学报》2000,52(5):402-406
对原代培养7~9d的海马神经元给予谷氨酸处理,24h后,神经元的存活率降低。预先给予垂体腺苷酸环化酶激活肽(PACAP)能显著减少谷氨酸引起的海马神经元死亡。谷氨酸呈剂量依赖性增加海马神经元细胞内钙离子含量,PACAP能抑制谷氨酸引起的海马神经元细胞内钙离子浓度的升高,特异性PACAP Ⅰ型受体拮抗剂PACAP 6-38能完全阻断PACAP减轻谷氨酸所致海马神经元损伤及降低谷氨酸所致神经元细胞内钙  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号