首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The hematological micronucleus test is regarded as an indicator of the clastogenic effect of chemicals and acute cytogenetic damage. The test can be carried out in red blood cells of the bone marrow and of the spleen, as well as in peripheral erythrocytes. We have determined the precise background values of micronucleated red blood cells for the peripheral blood of BALB/c, DBA/2, and NMRI mice. Bleeding, phenylhydrazine-induced hemolysis, and splenectomy generated an increase of micronucleated erythrocytes in the peripheral blood of mice. Our data thus demonstrate that such factors should be taken into consideration when the micronucleus test is used for screening the genotoxic potential of chemicals. Furthermore, the micronucleus-inducing effect of cyclophosphamide was studied in normal and splenectomized mice and, in addition, a comparison of the sensitivity of the micronucleus test was carried out in peripheral blood and bone marrow after cyclophosphamide treatment. Our data demonstrate that the kinetics of micronucleus formation were similar in normal and in splenectomized mice in which the micronucleus levels had returned to normal. The comparison of micronucleus formation in bone marrow and peripheral blood after cyclophosphamide treatment revealed the generation of similar quantities of micronucleated red blood cells in both tissues. The physiological mechanisms of micronucleus formation and removal and the potential role of chemically induced spleen damage during this process are discussed; the usefulness of the peripheral micronucleus test as a simple, rapid, and animal-saving modification of the standard bone marrow test is evaluated.Abbreviations CP cyclophosphamide - MN micronuclei - MNCE micronucleated normochromatic erythrocytes - MNPCE micronucleated polychromatic erythrocytes - MNRBC micronucleated red blood cells - NCE normochromatic erythrocytes - PCE polychromatic erythrocytes  相似文献   

2.
The hematological micronucleus test is regarded as an indicator of the clastogenic effect of chemicals and acute cytogenetic damage. The test can be carried out in red blood cells of the bone marrow and of the spleen, as well as in peripheral erythrocytes. We have determined the precise background values of micronucleated red blood cells for the peripheral blood of BALB/c DBA/2, and NMRI mice. Bleeding, phenylhydrazine-induced hemolysis, and splenectomy generated an increase of micronucleated erythrocytes in the peripheral blood of mice. Our data thus demonstrate that such factors should be taken into consideration when the micronucleus test is used for screening the genotoxic potential of chemicals. Furthermore, the micronucleus-inducing effect of cyclophosphamide was studied in normal and splenectomized mice and, in addition, a comparison of the sensitivity of the micronucleus test was carried out in peripheral blood and bone marrow after cyclophosphamide treatment. Our data demonstrate that the kinetics of micronucleus formation were similar in normal and in splenectomized mice in which the micronucleus levels had returned to normal. The comparison of micronucleus formation in bone marrow and peripheral blood after cyclophosphamide treatment revealed the generation of similar quantities of micronucleated red blood cells in both tissues. The physiological mechanisms of micronucleus formation and removal and the potential role of chemically induced spleen damage during this process are discussed; the usefulness of the peripheral micronucleus test as a simple, rapid, and animal-saving modification of the standard bone marrow test is evaluated.Abbreviations CP cyclophosphamide - MN micronuclei - MNCE micronucleated normochromatic erythrocytes - MNPCE micronucleated polychromatic erythrocytes - MNRBC micronucleated red blood cells - NCE normochromatic erythrocytes - PCE polychromatic erythrocytes  相似文献   

3.
Micronucleated erythrocytes are selectively removed from the peripheral circulation of normal rats. Splenectomy prevents this selective removal. In normal rats treated daily for 20 days with 0.2 mg/kg triethylenemelamine (TEM), micronucleated normochromatic (mature) erythrocytes did not accumulate in peripheral blood. In these same animals, the frequencies of micronucleated cells among polychromatic (newly formed) erythrocytes increased from 0.21 to 5.25 per thousand in peripheral blood and from 1.75 to 31.5 per thousand in bone marrow. Since both control and induced frequencies in peripheral blood were approximately 15% of those in bone marrow, the removal appears to be equally efficient for cells containing either spontaneously occurring or clastogen-induced micronuclei. In splenectomized rats treated daily for 11 days with 0.2 mg/kg TEM, the frequency of micronucleated normochromatic erythrocytes (NCEs) in the peripheral blood rose rapidly to 9 times the control value and remained elevated for 50-55 days, indicating a life span approximately equivalent to that of normal erythrocytes. Among splenectomized rats exposed to either 0.15 mg/kg triethylenemelamine, 6.5 mg/kg cyclophosphamide, or 300 mg/kg urethane for periods exceeding the erythrocyte life span, the incidences of micronucleated NCEs in the peripheral blood rose steadily from a control value of 1.0 per thousand to maximum values of 15.0, 12.7 and 8.9 per thousand, respectively. During these extended exposures, the mean frequencies of micronucleated polychromatic erythrocytes (PCEs) in peripheral blood increased from a spontaneous value of 0.9 per thousand to 23.0, 13.0 and 6.6 per thousand, respectively, reflecting the frequencies among PCEs in the bone marrow and approximating the maximum values among NCEs in the peripheral blood. Thus, the frequency of micronucleated erythrocytes in the peripheral blood of splenectomized rats can be used as an index of both acute and cumulative chromosomal damage, while in normal rats the use of peripheral blood for cytogenetic monitoring is restricted by the selective removal of these micronucleated cells.  相似文献   

4.
It used to be believed that the use of rat peripheral blood for the micronucleus assay would be difficult because micronucleated erythrocytes are captured and destroyed by the spleen quickly. We have applied an acridine orange (AO) supravital staining method to rat peripheral blood using AO-coated glass slides. Normal and splenectomized SD rats were treated once with mitomycin C (i.p.) or cyclophosphamide (p.o.), and 5 microliters of blood was collected at intervals from the tail vein between 0 and 72 h after treatment. For comparison, bone marrow cells were smeared conventionally 30 h after treatment. Although the frequencies of spontaneous and chemically induced micronucleated reticulocytes (MNRETs) from normal rats were lower on average in the highest dose group than those of splenectomized rats, the incidence of micronuclei among type I and II reticulocytes in normal rats at 48 h was almost identical to the incidence of RNA-containing erythrocytes with micronucleus in bone marrow. Thus, we suggest that rat peripheral reticulocytes can be used as target cells for the micronucleus assay.  相似文献   

5.
It used to be believed that the use of rat peripheral blood for the micronucleus assay would be difficult because micronucleated erythrocytes are captured and destroyed by the spleen quickly. We have applied an acridine orange (AO) supravital staining method to rat peripheral blood using AO-coated glass slides. Normal and splenectomized SD rats were treated once with mitomycin C (i.p.) or cyclophosphamide (p.o.), and 5 μl of blood was collected at intervals from the tail vein between 0 and 72 h after treatment. For comparison, bone marrow cells were smeared conventionally 30 h after treatment. Although the frequencies of spontaneous and chemically induced micronucleated reticulocytes (MNRETs) from normal rats were lower on average in the highest dose group than those of splenectomized rats, the incidence of micronuclei among type I and II reticulocytes in normal rats at 48 h was almost identical to the incidence of RNA-containing erythrocytes with micronucleus in bone marrow. Thus, we suggest that rat peripheral reticulocytes can be used as target cells for the micronucleus assay.  相似文献   

6.
Ultra-vital staining with acridine orange (AO) is introduced into the micronucleus assay with mouse peripheral blood cells. Peripheral blood was stained vitally by dropping whole blood on an AO-coated slide and covering the sample with a coverslip. With this method, reticulocytes are identified easily by their red fluorescing reticulum structure. The distinction between young and mature erythrocytes was clearer and less subjective than the distinction between polychromatic and normochromatic erythrocytes by Giemsa staining or by conventional AO fluorescent staining. Although the induction of micronucleated peripheral reticulocytes (MNRETs) was delayed by about 12 h compared to that of micronucleated polychromatic erythrocytes (MNPCEs) in the bone marrow, the frequencies of MNRETs and MNPCEs were almost identical at each optimal sampling time. It is concluded that bone marrow cells can be replaced by peripheral blood as material for the micronucleus assay.  相似文献   

7.
The frequency of micronuclei (also known as Howell-Jolly bodies) in peripheral blood erythrocytes of humans is extremely low due to the efficiency with which the spleen sequesters and destroys these aberrant cells. In the past, this has precluded erythrocyte-based analyses from effectively measuring chromosome damage. In this report, we describe a high-throughput, single-laser flow cytometric system for scoring the incidence of micronucleated reticulocytes (MN-RET) in human blood. Differential staining of these cells was accomplished by combining the immunochemical reagent anti-CD71-FITC with a nucleic acid dye (propidium iodide plus RNase). The immunochemical reagent anti-CD42b-PE was also incorporated into the procedure in order to exclude platelets which can interfere with analysis. This analytical system was evaluated with blood samples from ten healthy volunteers, one splenectomized subject, as well as samples collected from nine cancer patients before and over the course of radio- or chemotherapy. The mean frequency of MN-RET observed for the healthy subjects was 0.09%. This value is nearly two orders of magnitude higher than frequencies observed in mature erythrocytes, and is approximately half the MN-RET frequency observed for the splenectomized subject (0.20%). This suggests that the spleen's effect on micronucleated cell incidence can be minimized by restricting analyses to the youngest (CD71-positive) fraction of reticulocytes. Furthermore, MN-RET frequencies were significantly elevated in patients undergoing cancer therapy. Collectively, these data establish that micronuclei can be quantified in human peripheral blood reticulocytes with a single-laser flow cytometer, and that these measurements reflect the level of chromosome damage which has occurred in red marrow space.  相似文献   

8.
The frequency of micronucleated polychromatic erythrocytes (fMPCE) was determined in samples from bone marrow, spleen and peripheral blood of rats exposed to low doses of X-rays, cyclophosphamide or vincristine. The fMPCE values were lower in the peripheral blood than in bone marrow or spleen. This is due to the elimination of MPCE from the circulating blood, which was confirmed by the results from prolonged exposure of rats to gamma-radiation. When the analysis was restricted to the youngest PCE in peripheral blood, the sensitivity of the assay was considerably improved. This can be reproducibly achieved with the flow cytometric analysis.  相似文献   

9.
The micronucleus test with mouse spleen cells   总被引:1,自引:0,他引:1  
The results of this study show that the micronucleus test can be carried out with mouse spleen cells as well as with cells from bone marrow. Polychromatic erythrocytes occurred in the spleen at a frequency of about 9% of the whole spleen cells compared with about 13% in the bone marrow. 3 test compounds were used to compare the frequency of micronuclei in cells from the 2 tissues. Mitomycin C and cyclophosphamide induced micronucleated polychromatic erythrocytes in both spleen and bone marrow. Fosfomycin, an antibiotic having a broad spectrum of antimicrobial activities, did not induce micronucleated erythrocytes in either organ.  相似文献   

10.
The frequency of micronuclei (also known as Howell–Jolly bodies) in peripheral blood erythrocytes of humans is extremely low due to the efficiency with which the spleen sequesters and destroys these aberrant cells. In the past, this has precluded erythrocyte-based analyses from effectively measuring chromosome damage. In this report, we describe a high-throughput, single-laser flow cytometric system for scoring the incidence of micronucleated reticulocytes (MN-RET) in human blood. Differential staining of these cells was accomplished by combining the immunochemical reagent anti-CD71-FITC with a nucleic acid dye (propidium iodide plus RNase). The immunochemical reagent anti-CD42b-PE was also incorporated into the procedure in order to exclude platelets which can interfere with analysis. This analytical system was evaluated with blood samples from ten healthy volunteers, one splenectomized subject, as well as samples collected from nine cancer patients before and over the course of radio- or chemotherapy. The mean frequency of MN-RET observed for the healthy subjects was 0.09%. This value is nearly two orders of magnitude higher than frequencies observed in mature erythrocytes, and is approximately half the MN-RET frequency observed for the splenectomized subject (0.20%). This suggests that the spleen’s effect on micronucleated cell incidence can be minimized by restricting analyses to the youngest (CD71-positive) fraction of reticulocytes. Furthermore, MN-RET frequencies were significantly elevated in patients undergoing cancer therapy. Collectively, these data establish that micronuclei can be quantified in human peripheral blood reticulocytes with a single-laser flow cytometer, and that these measurements reflect the level of chromosome damage which has occurred in red marrow space.  相似文献   

11.
An experimental model system is presented that allows the identification and follow-up of mice exposed to ionizing radiation using flow-cytometric measurements of peripheral blood cells. In an experiment, properties of peripheral blood cells were analysed with flow cytometry for a rapid identification of individuals exposed to radiation. Individuals were then followed longitudinally in an attempt to identify those developing neoplasias. Male CBA mice, 25 days old, were subjected to fractionated x-irradiation (4 × 1.31 Gy) to induce haematopoietic malignancies. By repeated blood sampling followed by flow cytometry, frequencies of micronucleated erythrocytes and of proliferating nucleated cells were determined. Neoplasias were diagnosed by histopathology. Five days after the end of radiation exposure, increased frequencies of proliferating cells, polychromatic erythrocytes and micronucleated normochromatic erythrocytes clearly distinguished the exposed group from the control group. Increased cell proliferation in peripheral blood cells could be used to identify animals with manifest tumours, although these animals were at a late stage of tumour development. Animals with thymic lymphoma (not generalized) could not be identified with the flow-cytometric parameters used. We consider that this model system has a potential use when a small number of risk individuals need to be identified and monitored within a large population.  相似文献   

12.
The use of flow cytometry with rat peripheral blood erythrocytes is expected to increase the sensitivity of the in vivo micronucleus test and allows assessment of the genotoxic effects at doses that may be equal or close to those relevant to human exposure. However, there was a limitation to the use of rat peripheral blood erythrocytes since the spleen selectively removes micronucleated erythrocytes from circulation. In the present study, the selective analysis by flow cytometry of young MN-PCEs (micronucleated polychromatic erythrocytes or reticulocytes) by use of anti-CD71 antibodies was intended to compensate for the splenic clearance of micronucleated erythrocytes. The young polychromatic erythrocytes have on their surface a specific marker (CD71 antigen) that decreases in density during the maturation process. To investigate the usefulness of the flow cytometric micronucleus analysis combined with anti-CD71 staining of reticulocytes several compounds were tested in acute or sub-chronic treatment regimens. Furthermore, an evaluation was conducted in comparison with the standard rat bone-marrow micronucleus test with additional compounds. The results of acute studies with intraperitoneal application of ethyl methanesulfonate (EMS) (50, 100 and 200 mg/kg) and mitomycin C (MMC) (0.5, 1 and 2 mg/kg), were comparable to data published in the literature. Sub-chronic experiments were performed with cyclophosphamide (CP) (1, 2, 4 and 8 mg/(kg day)), colchicine (6, 8 mg/(kg day)) and mitomycin C (0.1 mg/(kg day)) and showed dose- and time-dependent accumulation of MN-PCEs. Parallel analysis of micronucleus induction in peripheral blood and bone marrow performed with Novartis compounds up to the highest tested dose (5 mg/kg of compound A, 200 mg/kg of compound B and 1250 mg/kg of compound C) showed concordant results. Furthermore, we performed kinetic studies of micronucleus induction in peripheral blood samples obtained at various times after a single treatment with 10 mg/kg CP and with 6 or 8 mg/kg of colchicine. Such experiments gave important supplementary information about the time course of micronucleus induction. Our data suggest that the peripheral blood flow-cytometry micronucleus test can be used for the assessment of micronucleus induction after acute and chronic exposures of rats to chemicals.  相似文献   

13.
The spontaneous levels of micronuclei in erythrocytes were established in embryos of the black-headed gull of two natural populations. In total 216 blood samples from the same number of individuals were examined. A statistically significant decrease in the number of spontaneous micronucleated erythrocytes was found after 13 days of incubation. We found no statistically significant difference in the spontaneous frequencies of micronucleated erythrocytes in the embryos of the two colonies studied, although they differed in anthropogenic load. Results of analysis of variance indicated that egg incubation time was the only variable significantly (P=0.0001) affecting spontaneous frequency of micronucleated erythrocytes in the embryos of black-headed gulls. We also took 78 eggs of different developmental stages from both colonies and exposed them for a further 24h to a dose of benzo[a]pyrene (30 microg per egg). After exposure to benzo[a]pyrene, the frequency of micronucleated erythrocytes was not increased in the embryos incubated for a total period of 13 days. A statistically significant increase in the number of micronucleated erythrocytes was recorded in the benzo[a]pyrene-treated embryos incubated for a total period of 14 days. Decrease in numbers of spontaneous micronucleated erythrocytes after the 13 day of incubation and increased levels of benzo[a]pyrene-induced micronuclei after the 13 day of incubation were discussed to be caused by changes in spleen and liver function in advanced developmental stages of the embryo.  相似文献   

14.
The ability of melatonin to influence paraquat-induced genotoxicity was tested using micronucleated polychromatic erythrocytes as an index of damage in both bone marrow and peripheral blood cells of mice. Melatonin (10 mg/kg) or an equal volume of saline were administered intraperitoneally (ip) to mice 30 min prior to an ip injection of paraquat (20 mg/kgx2), and thereafter at 6-h intervals until the conclusion of the study (72 h). The number of the micronucleated polychromatic erythrocytes increased after paraquat administration both in peripheral blood and bone marrow cells. Melatonin administration to paraquat-treated mice significantly reduced micronuclei formation in both peripheral blood and bone marrow cells; these differences were apparent at 24, 48 and 72 h after paraquat administration. The induction of micronuclei was time-dependent with peak values occurring at 24 and 48 h. The reduction in paraquat-related genotoxicity by melatonin is likely due in part to the antioxidant activity of the indole. We did not observe effects of melatonin over paraquat in paraquat+melatonin groups incubated at 0, 60 and 120 min. Mitomycin C, which was used as a positive control, also caused the expected large rises in micronuclei in both bone marrow and peripheral blood cells at 24, 48 and 72 h after its administration.  相似文献   

15.
A flow-cytometric assay is described that can be used to determine the frequency and the DNA content of micronucleated polychromatic (PCE) and normochromatic (NCE) erythrocytes in mouse peripheral blood. Thiazole orange was used for discrimination between PCEs and NCEs, while Hoechst 33342 was used to detect micronucleated PCEs and NCEs. Up to 70,000 polychromatic erythrocytes can be analyzed in less than 10 min. This corresponds to 150-3,000 micronucleated polychromatic erythrocytes, 90-95% of which are true events as determined with a fluorescence microscope after sorting. Using X-rays as the inducing agent in dose-response experiments, a significant increase can be registered at doses of 0.02 Gy. It seems possible that the method will also allow the detection of clastogenic effects of other inducing agents at lower doses than previously possible.  相似文献   

16.
N Asano  T Hagiwara 《Mutation research》1992,278(2-3):153-157
The peripheral blood micronucleus test using the acridine orange (AO) supravital staining method was validated with the potent bone marrow clastogen 2-acetylaminofluorene (2-AAF). 2-AAF induced micronuclei in peripheral blood reticulocytes dose-dependently as well as in bone marrow polychromatic erythrocytes. The incidence of micronucleated reticulocytes (MNRETs) peaked 48 h after a single treatment in both CD-1 and BDF1 mice, and the incidence of micronucleated polychromatic erythrocytes (MNPCEs) peaked 24 or 48 h after treatment. The maximum incidences of MNRETs were always higher than those of MNPCEs in both mouse strains treated once. In the double-treatment regime, the maximum incidence of MNRETs was observed at 24 h after the second treatment in each strain. The incidences of MNRETs in BDF1 mice were higher than in CD-1 mice after a single treatment but were comparable after double treatment. These results indicate that the peripheral blood micronucleus test using AO supravital staining is as sensitive as the conventional bone marrow assay. The new staining method can be performed more easily than the original smear method using either bone marrow or peripheral blood cells. Thus, the peripheral blood method using AO supravital staining is a possible alternative to the conventional bone marrow assay.  相似文献   

17.
A procedure for optimizing the configuration of flow cytometers for enumerating micronucleated erythrocytes is described. The method is based on the use of a biological model for micronucleated erythrocytes, the malaria parasite Plasmodium berghei. P. berghei endows target cells of interest (erythrocytes) with a micronucleus-like DNA content. Unlike micronuclei, parasitized red blood cells have a homogenous DNA content, and can be very prevalent in circulation. These characteristics make malaria-infected erythrocytes extremely well suited for optimizing instrument setup on a daily basis. The experiment described herein was designed to test the hypothesis that malaria-infected erythrocytes can greatly enhance the consistency with which flow cytometers are configured for micronucleus analyses, and thereby minimize intra- and interexperimental variation. Data collected over the course of several months, on two different flow cytometers, supports the premise that malaria-infected blood represents a useful biological standard which helps ensure reliable and consistent flow cytometric enumeration of rare micronucleated erythrocytes.  相似文献   

18.
Micronucleus assays using mouse peripheral blood stained vitally on acridine orange (AO)-coated slides were evaluated at two laboratories with 7,12-dimethylbenz[a]anthracene (DMBA) and compared with the standard bone marrow assay. DMBA was administered by single intraperitoneal injection to CD-1 mice at doses ranging from 5 to 80 mg/kg, then 5 microliters of peripheral blood was sampled from a tail vein at 24, 48, 72, 96, and 120 h after treatment. Similar incidences of micronucleated young erythrocytes were observed in peripheral blood reticulocytes and bone marrow polychromatic erythrocytes. The dose response of micronucleated reticulocytes was delayed compared to that of micronucleated polychromatic erythrocytes. The dose-response curves after treatment with DMBA differed depending on the sampling times, which revealed the difficulty of obtaining accurate dose-response relations in the micronucleus assay. The present result demonstrated that the simple and rapid AO supravital staining method is a valuable and easier method for obtaining dose- and time-response data for quantification of micronucleus induction by chemicals.  相似文献   

19.
Ionizing radiation is known to produce a variety of cellular and sub cellular damage in both prokaryotic and eukaryotic cells. Present studies were undertaken to assess gamma ray induced DNA damage in different organs of the chick embryo using alkaline comet assay and peripheral blood micronucleus test. Further the suitability of chick embryo, as an alternative model for genotoxicity evaluation of environmental agents was assessed. Fertilized eggs of Rhode island red strain were exposed to 0.5, 1 and 2 Gy of gamma rays delivered at a dose rate of 0.316 Gy/min using a 60Co teletherapy machine. Peripheral blood smears were prepared from 8- to 11-day-old chick embryos for micronucleus test. Alkaline comet assay was performed on 11-day-old chick embryos in different organs such as the heart, liver, lung, blood, bone marrow, brain and kidney.Analysis of the data revealed a significant increase in the frequency of micronucleated polychromatic erythrocytes, micronucleated normochromatic erythrocytes and total micronucleated erythrocytes in the peripheral blood of gamma irradiated chick embryos at all the doses tested as compared to the respective controls. The polychromatic to normochromatic erythrocytes ratio which is an indicator of proliferation rate of hematopoetic tissue, decreased in the irradiated groups as compared to the controls. Data obtained from comet assay, clearly demonstrated a significant increase in DNA strand breaks in all the organs of irradiated chick embryos as compared to the respective controls. However, maximum damage was observed in the heart tissue on all the doses tested, followed by kidney, brain, lung, blood and liver. The lowest damage was observed in the bone marrow tissue. Both micronucleus test and comet assay were found to be suitable biomarkers for the evaluation of genotoxicity of gamma radiation in the chick embryo.  相似文献   

20.
The peripheral blood micronucleus test using the acridine orange (AO) supravital staining method was validated with the potent bone marrow clastogen 2-acetylaminofluorene (2-AAF). 2-AAF induced micronuclei in peripheral blood reticuiocytes dose-dependently as well as in bone marrow polychromatic erythrocytes. The incidence of micronucleated reticuiocytes (MNRETs) peaked 48 h after a single treatment in both CD-1 and BDF1 mice, and the incidence of micronucleated polychromatic erythrocytes (MNPCEs) peaked 24 or 48 h after treatment. The maximum incidences of MNRETs were always higher than those of MNPCEs in both mouse strains treated once. In the double-treatment regime, the maximum incidence of MNRETs was observed at 24 h after the second treatment in each strain. The incidences of MNRETs in BDF1 mice were higher than in CD-1 mice after a single treatment but were comparable after double treatment.These results indicate that the peripheral blood micronucleus test using AO supravital staining is as sensitive as the conventional bone marrow assay. The new staining method can be performed more easily than the original smear method using either bone marrow or peripheral blood cells. Thus, the peripheral blood method using AO supravital staining is a possible alternative to the conventional bone marrow assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号