首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terpene, resin acid and total phenolic concentrations in five‐year‐old Scots pine (Pinus sylvestris L.) seedlings were analysed after exposure to ambient and realistically elevated (2 × ambient) O3 and CO2 concentrations and their combination in open‐top chambers during two growing seasons. Under O3 exposure, limonene concentration in needles and isopimaric concentration in stems decreased significantly. As a response to elevated CO2, α‐pinene and total phenolic concentrations in needles increased significantly, while bornyl acetate concentration in needles and palustric + levopimaric and neoabietic acid concentrations in stems decreased significantly. Some terpenes and resin acids were found at lower concentrations in the combined O3 and CO2 treatment than in O3 exposure or elevated CO2. A negative chamber effect was found: seedlings growing inside the chambers with ambient air had significantly lower concentrations of some terpenes and resin acids than seedlings growing outside the chambers. There was a lot of between‐tree variation in terpene and resin acid concentrations, which is typical of open‐pollinated populations. The results of this study suggest that, at least in short‐term experiments, Scots pine secondary metabolites are relatively insensitive to climate change factors. Total phenolics in the needles were the most responsive group showing about 25% increase in elevated CO2, and O3 exposure did not mitigate this CO2 effect. Terpenes and resin acids were less responsive, although some individual compounds showed notable responses, e.g. α‐pinene in needles, which increased about 50% in response to elevated CO2. As a consequence, although there were only slight effects on total pools of needle secondary metabolites, considerable O3 and CO2 effects on certain individual compounds might have ecological significance via trophic amplification, e.g. in decomposing processes of needle litter.  相似文献   

2.
Elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations have both been shown to affect plant tissue quality, which in turn could affect litter decomposition and carbon (C) and nutrient cycling. In order to evaluate effects of climate change on litter chemistry, needle litter was collected from Scots pine (Pinus sylvestris L.) saplings exposed to elevated CO2 or O3 concentration and their combination over three growing seasons in open‐top chambers. The decomposition of needle litter was followed for 19 months in a pine forest. During decomposition, needle samples for secondary compound analysis were collected and the mass loss of needles was followed. Main nutrients and total phenolics were analysed from litter in the beginning and at the end of the experiment. After 19‐month decomposition, the accumulated mass loss was about 34%; however, no significant differences were found in decomposition rates of needle litter between various treatments. Concentrations of total monoterpenes were about 4%, total resin acids 21% and total phenolics 14% of the initial concentrations in litter after 19‐month decomposition. In the beginning of litter decomposition, concentrations of individual monoterpenes –α‐pinene and β‐pinene – were significantly higher in needle litter grown under elevated CO2. However, concentrations of total monoterpenes during the whole decomposition period were not significantly affected by CO2 or O3 treatments. Concentrations of some individual and total resin acids were higher in needle litter grown under elevated CO2 or O3 than under ambient air. There were no significant differences in concentrations of total phenolics as well as nitrogen (N) and the main nutrient concentrations between treatments during decomposition. High concentrations of monoterpenes and resin acids in needles might slightly delay C recycling in forest soils. It is concluded that elevated CO2 and O3 concentrations do not have remarkable impacts on litter decomposition processes in Scots pine forests.  相似文献   

3.
Young Scots pine trees naturally established at a pine heath were exposed to two concentrations of CO2 (ambient and doubled ambient) and two O3 regimes (ambient and doubled ambient) and their combination in open-top field chambers during growing seasons 1994, 1995 and 1996 (late May to 15 September). Filtered ozone treatment and chamberless control trees were also included in the treatment comparisons. Root ingrowth cores were inserted to the undisturbed soil below the branch projection of each tree at the beginning of the fumigation period in 1994 and were harvested at the end of the fumigation periods in 1995 and 1996. Root biomasses were determined from different soil layers in the ingrowth cores, and the infection levels of different mycorrhizal types were calculated. Elevated O3 and CO2 did not have significant effects on the biomass production of Scots pine coarse (Ø > 2 mm) or fine roots (Ø < 2 mm) and roots of grasses and dwarf shrubs. Elevated O3 caused a transient stimulation, observable in 1995, in the proportion of tuber-like mycorrhizas, total mycorrhizas and total short roots but this stimulation disappeared during the last study year. Elevated CO2 did not enhance carbon allocation to root growth or mycorrhiza formation, although a diminishing trend in the mycorrhiza formation was observed. In the combination treatment increased CO2 inhibited the transient stimulating effect of ozone, and a significant increase of old mycorrhizas was observed. Our conclusion is that doubled CO2 is not able to increase carbon allocation to growth of fine roots or mycorrhizas in nutrient poor forest sites and realistically elevated ozone does not cause a measurable limitation to roots within a period of three exposure years.  相似文献   

4.
The aim of this study was to evaluate the long-term effects of elevated CO2 concentration (doubling of ambient CO2 concentration) and temperature (2–6°C elevation) on the concentration and content of secondary compounds in the needles of Scots pine (Pinus sylvestris L.) saplings grown in closed-top environmental chambers. The chamber treatments included (1) ambient temperature and CO2, (2) ambient temperature and elevated CO2, (3) elevated temperature and ambient CO2, and (4) elevated temperature and elevated CO2. The needle sampling and analyses of monoterpenes, HPLC-phenolics and condensed tannins in current- and 1-year-old needles were made in two consecutive years. The results showed that the effects of elevation of CO2 and temperature were greatest on the monoterpene concentration in the needles while the concentration of HPLC-phenolics remained almost unaffected by the changed growing conditions. Most of the observed decrease in monoterpene concentration was caused by the CO2 enrichment while the effect of elevated temperature alone was not as significant. The accumulation of condensed tannins tended to increase due to the elevation of CO2 alone compensating the reduced carbon allocation to monoterpenes. Overall, the responses of the concentrations of secondary compounds to the elevation of CO2 and temperature are variable and depend strongly on the properties and characteristics of each compound as well as on the interrelation between the production of these compounds and the primary production of trees.  相似文献   

5.
Kellomäki  Seppo  Wang  Kai-Yun 《Plant Ecology》1998,136(2):229-248
Starting in early spring of 1994, naturally regenerated, 30-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers and exposed in situ to doubled ambient O3,doubled ambient CO2 and a combination of O3 and CO2 from 15 April to 15 September. To investigate daily and seasonal responses of CO2 exchange to elevated O3 and CO2, the CO2 exchange of shoots was measured continuously by an automatic system for measuring gas exchange during the course of one year (from 1 Januray to 31 December 1996). A process-based model of shoot photosynthesis was constructed to quantify modifications in the intrinsic capacity of photosynthesis and stomatal conductance by simulating the daily CO2 exchange data from the field. Results showed that on most days of the year the model simulated well the daily course of shoot photosynthesis. Elevated O3 significantly decreased photosynthetic capacity and stomatal conductance during the whole photosynthetic period. Elevated O3 also led to a delay in onset of photosynthetic recovery in early spring and an increase in the sensitivity of photosynthesis to environmental stress conditions. The combination of elevated O3 and CO2 had an effect on photosynthesis and stomatal conductance similar to that of elevated O3 alone, but significantly reduced the O3-induced depression of photosynthesis. Elevated CO2 significantly increased the photosynthetic capacity of Scots pine during the main growing season but slightly decreased it in early spring and late autumn. The model calculation showed that, compared to the control treatment, elevated O3 alone and the combination of elevated O3 and CO2 decreased the annual total of net photosynthesis per unit leaf area by 55% and 38%, respectively. Elevated CO2 increased the annual total of net photosynthesis by 13%.  相似文献   

6.
We examined the effects of CO2 and defoliation on tree chemistry and performance of the forest tent caterpillar, Malacosoma disstria. Quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees were grown in open-top chambers under ambient or elevated concentrations of CO2. During the second year of growth, half of the trees were exposed to free-feeding forest tent caterpillars, while the remaining trees served as nondefoliated controls. Foliage was collected weekly for phytochemical analysis. Insect performance was evaluated on foliage from each of the treatments. At the sampling date coincident with insect bioassays, levels of foliar nitrogen and starch were lower and higher, respectively, in high CO2 foliage, and this trend persisted throughout the study. CO2-mediated increases in secondary compounds were observed for condensed tannins in aspen and gallotannins in maple. Defoliation reduced levels of water and nitrogen in aspen but had no effect on primary metabolites in maple. Similarly, defoliation induced accumulations of secondary compounds in aspen but not in maple. Larvae fed foliage from the enriched CO2 or defoliated treatments exhibited reduced growth and food processing efficiencies, relative to larvae on ambient CO2 or nondefoliated diets, but the patterns were host species-specific. Overall, CO2 and defoliation appeared to exert independent effects on foliar chemistry and forest tent caterpillar performance.  相似文献   

7.
Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to ambient or elevated ozone (O3) (1.52ambient) and carbon dioxide (CO2) (590 µmol mol-1) concentrations during two growing seasons in open-top field chambers (OTCs). Five different treatments were applied in the chambers: filtered air, ambient air, elevated O3, elevated CO2, and elevated O3 and CO2 combined. Ambient plots outside the OTCs were also included, but the chamber ambient was used as a control in O3 and CO2 treatments due to a significant chamber effect. Increases in yellowing and chlorotic mottling of previous-year (C+1) needles and in the amount of cytoplasmic ribosomes and electron density of the chloroplast stroma in current-year (C) and C+1 needle mesophyll cells were observed in elevated O3 at both CO2 concentrations. Elevated O3 alone caused a non-significant 10.9% decrease in plant total dry mass and a significant decrease in manganese (Mn) content of C needles. CO2 enrichment caused a significant increase in needle cross-sectional width after the first year of exposure, and an accumulation of starch and slight curling and swelling of the chloroplast thylakoids in the mesophyll tissue of C needles after the second year of exposure. Calcium and Mn contents were increased and copper and nitrogen contents were decreased, significantly, in CO2-exposed needles. A non-significant 19.1% increase in plant total dry mass was measured in elevated CO2 alone, whereas a 14.8% reduction in total dry mass, together with a significant reduction in current-year main shoot length, was found in the combined treatment. Overall, in spite of decreases in O3-induced visible injuries by CO2, elevated CO2 levels were not able to counteract the impact of O3 in this experiment.  相似文献   

8.
Effects of elevated carbon dioxide (CO2) and ozone (O3) on wood properties of two initially 7‐year‐old silver birch (Betula pendula Roth) clones were studied after a fumigation during three growing seasons. Forty trees, representing two fast‐growing clones (4 and 80), were exposed in open‐top chambers to the following treatments: outside control, chamber control, 2 × ambient [CO2], 2 × ambient [O3] and 2 × ambient [CO2]+2 × ambient [O3]. After the 3‐year exposure, the trees were felled and wood properties were analyzed. The treatments affected both stem wood structure and chemistry. Elevated [CO2] increased annual ring width, and concentrations of extractives and starch, and decreased concentrations of cellulose and gravimetric lignin. Elevated O3 decreased vessel percentage and increased cell wall percentage in clone 80. In vessel percentage, elevated CO2 ameliorated the O3‐induced decrease. In clone 4, elevated O3 decreased nitrogen concentration of wood. The two clones had different wood properties. In clone 4, the concentrations of extractives, starch, soluble sugars and nitrogen were greater than in clone 80, while in clone 80 the concentrations of cellulose and acid‐soluble lignin were higher. Clone 4 also had slightly longer fibres, greater vessel lumen diameter and vessel percentage than clone 80, while in clone 80 cell wall percentage was greater. Our results show that wood properties of young silver birch trees were altered under elevated CO2 in both clones, whereas the effects of O3 depended on clone.  相似文献   

9.
This study investigated changes in carbon-based plant secondary metabolite concentrations in the needles of Pinus sylvestris saplings, in response to long-term elevation of atmospheric CO2, at two rates of nutrient supply. Experimental trees were grown for 3 years in eight open-top chambers (OTCs), four of which were maintained at ambient (∼350 μmol mol−1) and four at elevated (700 μmol mol−1) CO2 concentrations, plus four open air control plots. Within each of these treatments, plants received either high (7.0 g N m−2 year−1 added) or low (no nutrients added) rates of nutrient supply for two years. Needles from lateral branches were analysed chemically for concentrations of condensed tannins and monoterpenes. Biochemical determinations of cellulase digestibility and protein precipitating capacity of their phenolic extracts were made because of their potential of importance in ecological interactions between pine and other organisms including herbivores and decomposers. Elevated CO2 concentration caused an increase (P<0.05) in dry mass per needle, tree height and the concentration of the monoterpene α-pinene, but there were no direct effects of CO2 concentration on any of the other chemical measurements made. High nutrient availability increased cellulase digestibility of pine needles. There was a significant negative effect of the OTCs on protein precipitating capacity of the needle extracts in comparison to the open-air controls. Results suggest that predicted changes in atmospheric CO2 concentration will be insufficient to produce large changes in the concentration of condensed tannins and monoterpenes in Scots pine. Processes which are influenced by these compounds, such as decomposition and herbivore food selection, along with their effects on ecosystem functioning, are therefore unlikely to be directly affected through changes in these secondary metabolites. Received: 20 October 1997 / Accepted: 28 February 1998  相似文献   

10.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies Karst.) seedlings were exposed to realistically elevated O3 levels in open‐air experiments over three growing seasons. The total O3 exposure doses were 1.2 × (1991), 1.5 × (1992) and 1.7 × (1993) ambient levels. During the 1992 and 1993 growing seasons pine and spruce seedlings received two different levels of nitrogen supply. Effects on growth, mycorrhiza formation, needle ultrastructure, primary and secondary compounds were studied. Ozone exposure had only slight effects on biomass production, growth height and nutrient content of studied conifers. Higher nitrogen availability improved growth of the seedlings and resulted in higher concentration of nitrogen in needles. In Scots pine O3 exposure did not have effects on quantity of total mycorrhizas and short roots, while higher nitrogen availability decreased quantity of mycorrhizas and short roots. In both tree species O3 exposure induced O3‐related ultrastructural symptoms, e.g. granulation and dark staining of the chloroplast stroma in the needle mesophyll cells, at both nitrogen availability levels. Ozone exposure and nitrogen availability did not have significant effects on starch concentrations in either tree species. Concentrations of some individual terpenes were higher in O3‐exposed needles, while concentrations of individual and total resin acids, total phenolics and catechins were not affected by O3 exposure. Nitrogen availability did not have substantial effects on concentrations of monoterpenes. By contrast, concentrations of some individual and total resin acids were lower in pine needles and higher in spruce needles with higher nitrogen availability, while phenolic concentration in spruce needles decreased at higher nitrogen availability. The results suggest that realistically elevated levels of O3 in the field can have some negative effects on the mesophyll ultrastructure of conifer needles, but carbon allocation to root and shoot growth and secondary metabolites are not affected substantially.  相似文献   

11.
Abstract 1 The effect of elevated CO2 and temperature on the foliar chemistry Betula pendula Roth and the feeding performance of polyphagous weevils Phyllobius maculicornis Germ. was studied. Birch seedlings were grown during one growing season in chamber‐less field conditions and in closed‐top chambers exposed to four different treatments: ambient CO2 (350 p.p.m) and temperature, elevated atmospheric CO2 (700 p.p.m) and ambient temperature, elevated temperature +3 °C above ambient) and ambient CO2, and a combination of elevated CO2 and temperature. 2 In leaves under CO2 enrichment, the concentration of nitrogen and some flavonol glycosides significantly decreased, whereas the concentration of total phenolics, condensed tannins and (+)‐catechin significantly increased. The total concentration of cinnamoylquinic acids was significantly increased by CO2 and decreased by temperature. The concentration of salidroside increased under elevated temperature. 3 Weevil‐feeding experiments were carried out in a five‐choice arrangement, one leaf from each of the five treatments (chamber‐less field controls and four different treatments in chambers) being placed in random order in a plastic box. The weevils preferred the leaves grown under elevated CO2, which had low nitrogen, high phenolics and the highest condensed tannin concentrations. Whether the reason for this trend is due to the stimulating effect of condensed tannins and/or a change in other secondary compounds, remains unknown. The weevils did not show any obviously different response in feeding performance to temperature and the combination of elevated CO2 and temperature.  相似文献   

12.
Elevated levels of both ozone and UV-B radiation are typical for high-altitude sites. Few studies have investigated their possible interaction on plants. This study reports interactive effects of O3 and UV-B radiation in four-year-old Norway spruce and Scots pine trees. The trees were cultivated in controlled environmental facilities under simulated climatic conditions recorded on Mt Wank, an Alpine mountain in Bavaria, and were exposed for one growing season to simulated ambient or twice-ambient ozone regimes at either near ambient or near zero UV-B radiation levels. Chlorotic mottling and yellowing of current year needles became obvious under twice-ambient O3 in both species at the onset of a high ozone episode in July. Development of chlorotic mottling in relation to accumulated ozone concentrations over a threshold of 40 nL L–1 was more pronounced with near zero rather than ambient UV-B radiation levels. In Norway spruce, photosynthetic parameters at ambient CO2 concentration, measured at the end of the experiment, were reduced in trees cultivated under twice-ambient O3, irrespective of the UV-B treatment. Effects on photosynthetic capacity and carboxylation efficiency were restricted to trees exposed to near zero levels of UV-B radiation, and twice-ambient O3. The data indicate that UV-B radiation, applied together with O3, ameliorates the detrimental effects of O3. The data also demonstrate that foliar symptoms develop more rapidly in Scots pine than in Norway spruce at higher accumulated ozone concentrations. Symbols and abbreviations: LSD, least significant difference; PAS300, UV-B irradiance weighted according to the plant action spectrum of Green et al. (1974) normalized at 300 (nm); AOT40, (AOT = accumulated over threshold) reflects the sum of hourly ozone concentrations above 40 nL L–1 during daylight hours (> 50 Wm–2) ( Kärenlampi & Skärby 1996 ); A350, net photosynthesis at ambient CO2; G350, stomatal conductance for water vapour at ambient CO2; A2500, net photosynthesis at saturating CO2 (maximal potential photosynthetic activity); CE, carboxylation efficiency; ROS, reactive oxygen species; RuBP, ribulose 1,5-bisphosphate; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase; GLM, general linear model.  相似文献   

13.
The long-term effects of elevated CO2 and CO2+O3 concentrations on the growth allocation in northern provenances of Norway spruce [Picea abies (L.) Karst.], Scots pine [Pinus sylvestris (L.)] and pubescent birch clones (Betula pubescens Ehrh.) were examined in open-top chambers after a 4-year-long experiment. The total biomass responses of the tree seedlings to increased CO2 and CO2+O3 concentrations were not statistically significant and varied between the provenances and species. The seedlings of northern origin were the least sensitive in their response to treatments. The total biomass of the Norway spruce seedlings slightly decreased in response to CO2 in three provenances. Scots pine from the local provenance had a slight biomass increase after elevated CO2+O3 treatment. The slower-growing birch clone seemed to benefit from elevated CO2, whereas in the faster-growing clone, reductions in biomass accumulation were seen. The combined CO2+O3 treatment reduced the positive effects of elevated CO2, especially in the slower-growing birches. Observations of significant effects were limited to a few parameters. Carbon dioxide treatment decreased needle dry weight of Norway spruce in one northern provenance. The needle and wood dry weight increased (CO2 + O3) in local Scots pine. Significant birch response was limited to increased fine root density (O3 + CO2) in the inland clone. The diverse effects of elevated CO2 and CO2 +O3 on seedling growth and biomass provide evidence that exposure of northern trees to the enhanced variable CO2 and O3 concentrations of the future will have varied effects on the growth of these species. The direction and magnitude of those effects will differ depending on species and origins.  相似文献   

14.
This study examined the effects of season-long exposure of Chinese pine (Pinus tabulaeformis) to elevated carbon dioxide (CO2) and/or ozone (O3) on indole-3-acetic acid (IAA) content, activities of IAA oxidase (IAAO) and peroxidase (POD) in needles. Trees grown in open-top chambers (OTC) were exposed to control (ambient O3, 55 nmol mol−1 + ambient CO2, 350 μmol mol−1, CK), elevated CO2 (ambient O3 + high CO2, 700 μmol mol−1, EC) and elevated O3 (high O3, 80 ± 8 nmol mol−1 + ambient CO2, EO) OTCs from 1 June to 30 September. Plants grown in elevated CO2 OTC had a growth increase of axial shoot and needle length, compared to control, by 20% and 10% respectively, while the growth in elevated O3 OTC was 43% and 7% less respectively, than control. An increase in IAA content and POD activity and decrease in IAAO activity were observed in trees exposed to elevated CO2 concentration compared with control. Elevated O3 decreased IAA content and had no significant effect on IAAO activity, but significantly increased POD activity. When trees pre-exposed to elevated CO2 were transferred to elevated O3 (EC–EO) or trees pre-exposed to elevated O3 were transferred to elevated CO2 (EO–EC), IAA content was lower while IAAO activity was higher than that transferred to CK (EC–CK or EO–CK), the change in IAA content was also related to IAAO activity. The results indicated that IAAO and POD activities in Chinese pine needles may be affected by the changes in the atmospheric environment, resulting in the change of IAA metabolism which in turn may cause changes in Chinese pine’s growth. An erratum to this article can be found at  相似文献   

15.
The prediction that litter quality, and hence litter decomposition rates, would be reduced when plants are grown in a CO2-enriched atmosphere has been based on the observation that foliar N concentrations usually are lower in elevated [CO2]. The implicit assumption is that the N concentration in leaf litter reflects the N concentration in green leaves. Here we evaluate that assumption by exploring whether the process of seasonal nutrient resorption is different in CO2-enriched plants. Nitrogen resorption was studied in two species of maple trees (Acer rubrum L. and A. saccharum Marsh.), which were planted in unfertilized soil and grown in open-top chambers with ambient or elevated [CO2] in combination with ambient or elevated temperature. In the second growing season, prior to autumn senescence, individual leaves were collected and analyzed for N and dry matter content. Other leaves at the same and an adjacent node were collected for analysis as they senesced and abscised. This data set was augmented with litter samples from the first growing season and with green leaves and leaf litter collected from white oak (Quercus alba L.) saplings grown in ambient and elevated [CO2] in open-top chambers. In chambers maintained at ambient temperature, CO2 enrichment reduced green leaf N concentrations by 25% in A. rubrum and 19% in A. saccharum. CO2 enrichment did not significantly reduce resorption efficiency so the N concentration also was reduced in litter. There were, however, few effects of [CO2] on N dynamics in these leaves; differences in N concentration usually were the result of increased dry matter content of leaves. The effects of elevated [CO2] on litter N are inherently more difficult to detect than differences in green leaves because factors that affect senescence and resorption increase variability. This is especially so when other environmental factors cause a disruption in the normal progress of resorption, such as in the first year when warming delayed senescence until leaves were killed by an early frost. The results of this experiment support the approach used in ecosystem models in which resorption efficiency is constant in ambient and elevated [CO2], but the results also indicate that other factors can alter resorption efficiency. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
This study examined the impacts of elevated CO2 or O3 on indole-3-acetic acid (IAA) content, activities of IAA oxidase (IAAO) and peroxidase (POD) in Ginkgo biloba leaves. Plants grown in open-top chambers were exposed to ambient atmosphere (control; C), elevated CO2 and elevated O3 from 1 June to 30 September. An increase in IAA content and decrease in IAAO and POD activities were observed in plants exposed to elevated CO2 compared with C. Elevated O3 had no significant effect on IAA content and IAAO activity, but increased POD activity during the early days. When trees pre-exposed to elevated CO2 were transferred to elevated O3 or C, the increase in IAAO activity resulted in the decrease in IAA content. When trees pre-exposed to elevated O3 were transferred to elevated CO2 or C, IAA content, IAAO and POD activities showed no significant changes. The influence of POD activity on the IAA activity was low.  相似文献   

17.
Elevated concentrations of O3 and CO2 have both been shown to affect structure, nutrient status, and deposition of secondary metabolites in leaves of forest trees. While such studies have produced robust models of the effects of such air pollutants on tree ecophysiology and growth, few have considered the potential for broader, ecosystem-level effects after these chemically and structurally altered leaves fall as leaf litter and decay. To determine the effects of elevated O3 and/or CO2 on the subsequent decomposition and nutrient release from the leaves grown in such altered atmospheres, we grew seedlings of three widespread North American forest trees, black cherry (Prunus serotina) (BC), sugar maple (Acer saccharum) (SM), and yellow-poplar (Liriodendron tulipifera) (YP) for two growing seasons in charcoal-filtered air (CF-air=approximately 25% ambient O3), ambient O3 (1X) or twice-ambient O3 (2X) in outdoor open-top chambers. We then assayed the loss of mass and N from the litter derived from those seedlings through one year litterbag incubations in the forest floor of a neighboring forest stand. Mass loss followed linear functions and was not affected by the O3 regime in which the leaves were grown. Instantaneous decay rates (i.e. k values) averaged SM:–0.707 y-1, BC:–0.613 y-1, and YP:–0.859 y-1. N loss from ambient (1X) O3-grown SM leaves was significantly greater than from CF-air leaves: N loss from BC leaves did not differ among treatments. Significantly less N was released from CF-air-grown YP leaves than from 1X or 2X O3-treated leaves. YP leaves from plants grown in pots at 2X O3 and 350 ppm supplemental CO2 in indoor pollutant fumigation chambers (CSTRs or Continuously Stirred Tank Reactors) loss 40% as much mass and 27% as much N over one year as did leaves from YP grown in CF-air or 2X O3. Thus, for leaves from plants grown in pots in controlled environment fumigation chambers, the concentrations of both O3 and CO2 can affect N release from litter incubated in the field whereas mass loss rate was affected only by CO2. Because both mass loss and N release from leaves grown at elevated CO2 were reduced significantly (at least for yellow-poplar), forests exposed to elevated CO2 may have significantly reduced N turnover rates, thereby resulting in increased N limitation of tree growth, especially in forests which are already N-limited.  相似文献   

18.
The objective of this study was to test whether elevated [CO2], [O3] and nitrogen (N) fertility altered leaf mass per area (LMPA), non‐structural carbohydrate (TNC), N, lignin (LTGA) and proanthocyanidin (PA) concentrations in cotton (Gossypium hirsutum L.) leaves and roots. Cotton was grown in 14 dm3 pots with either sufficient (0·8 g N dm ? 3) or deficient (0·4 and 0·2 g N dm ? 3) N fertilization, and treated in open‐top chambers with either ambient or elevated ( + 175 and + 350 μ mol mol ? 1) [CO2] in combination with either charcoal‐filtered air (CF) or non‐filtered air plus 1·5 times ambient [O3]. At about 50 d after planting, LMPA, starch and PA concentrations in canopy leaves were as much as 51–72% higher in plants treated with elevated [CO2] compared with plants treated with ambient [CO2], whereas leaf N concentration was 29% lower in elevated [CO2]‐treated plants compared with controls. None of the treatments had a major effect on LTGA concentrations on a TNC‐free mass basis. LMPA and starch levels were up to 48% lower in plants treated with elevated [O3] and ambient [CO2] compared with CF controls, although the elevated [O3] effect was diminished when plants were treated concurrently with elevated [CO2]. On a total mass basis, leaf N and PA concentrations were higher in samples treated with elevated [O3] in ambient [CO2], but the difference was much reduced by elevated [CO2]. On a TNC‐free basis, however, elevated [O3] had little effect on tissue N and PA concentrations. Fertilization treatments resulted in higher PA and lower N concentrations in tissues from the deficient N fertility treatments. The experiment showed that suppression by elevated [O3] of LMPA and starch was largely prevented by elevated [CO2], and that interpretation of [CO2] and [O3] effects should include comparisons on a TNC‐free basis. Overall, the experiment indicated that allocation to starch and PA may be related to how environmental factors affect source–sink relationships in plants, although the effects of elevated [O3] on secondary metabolites differed in this respect.  相似文献   

19.
Atmospheric change may affect plant phenolic compounds, which play an important part in plant survival. Therefore, we studied the impacts of CO2 and O3 on the accumulation of 27 phenolic compounds in the short‐shoot leaves of two European silver birch (Betula pendula Roth) clones (clones 4 and 80). Seven‐year‐old soil‐grown trees were exposed in open‐top chambers over three growing seasons to ambient and twice ambient CO2 and O3 concentrations singly and in combination in central Finland. Elevated CO2 increased the concentration of the phenolic acids (+25%), myricetin glycosides (+18%), catechin derivatives (+13%) and soluble condensed tannins (+19%) by increasing their accumulation in the leaves of the silver birch trees, but decreased the flavone aglycons (?7%) by growth dilution. Elevated O3 increased the concentration of 3,4′‐dihydroxypropiophenone 3‐β‐d ‐glucoside (+22%), chlorogenic acid (+19%) and flavone aglycons (+4%) by inducing their accumulation possibly as a response to increased oxidative stress in the leaf cells. Nevertheless, this induction of antioxidant phenolic compounds did not seem to protect the birch leaves from detrimental O3 effects on leaf weight and area, but may have even exacerbated them. On the other hand, elevated CO2 did seem to protect the leaves from elevated O3 because all the O3‐derived effects on the leaf phenolics and traits were prevented by elevated CO2. The effects of the chamber and elevated CO2 on some compounds changed over time in response to the changes in the leaf traits, which implies that the trees were acclimatizing to the altered environmental conditions. Although the two clones used possessed different composition and concentrations of phenolic compounds, which could be related to their different latitudinal origin and physiological characteristics, they responded similarly to the treatments. However, in some cases the variation in phenolic concentrations caused by genotype or chamber environment was much larger than the changes caused by either elevated CO2 or O3.  相似文献   

20.
In this experiment, the photosynthetic acclimation of successive needle cohorts of Scots pine were studied during 3 years of growth at elevated CO2 and temperature. Naturally regenerated Scots pine (Pinus sylvestris L.) trees were subjected to elevated CO2 concentration (+CO2, 700 p.p.m), elevated temperature (+T, ambient +2 to +6 °C) and to a combination of elevated CO2 and temperature (+CO2 + T) in closed‐top chambers, starting in August 1996. Trees growing in chambers with ambient CO2 and ambient temperature served as controls (AmbC). Elevated CO2 influenced the dark reactions more than the light reactions of photosynthesis, as in the 1996 and 1997 cohorts the carboxylation capacity of Rubisco was reduced in the first and second year of exposure, but there was no consistent change in chlorophyll fluorescence. Net photosynthesis measured at growth concentration of CO2 was higher at +CO2 than at AmbC on only one measuring occasion, was generally lower at +T and was not changed at +CO2 + T. However, trees grown at +T tended to invest more nitrogen (N) in Rubisco, as Rubisco/chlorophyll and the proportion of the total needle N bound to Rubisco occasionally increased. The interaction of +CO2 and +T on Rubisco was mostly negative; consequently, in the second and third year of the experiment the carboxylation capacity decreased at +CO2 + T. In the 1996, 1997 and 1998 cohorts, the structural N concentration of needles was lower at +CO2 than at AmbC. Elevated CO2 and elevated temperature generally had a positive interaction on N concentration; consequently, N concentration in needles decreased less at +CO2 + T than at +CO2. At +CO2 + T, the acclimation response of needles varied between years and was more pronounced in the 1‐year‐old needles of the 1997 cohort than in those of the 1998 cohort. Thus, acclimation was not always greater in 1‐year‐old needles than in current‐year needles. In the +CO2 + T treatment, elevated temperature had a greater effect on acclimation of needles than elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号