共查询到20条相似文献,搜索用时 0 毫秒
1.
Purification of charybdotoxin, a specific inhibitor of the high-conductance Ca2+-activated K+ channel 总被引:9,自引:0,他引:9
Charybdotoxin is a high-affinity specific inhibitor of the high-conductance Ca2+-activated K+ channel found in the plasma membranes of many vertebrate cell types. Using Ca2+-activated K+ channels reconstituted into planar lipid bilayer membranes as an assay, we have purified the toxin from the venom of the scorpion Leiurus quinquestriatus by a two-step procedure involving chromatofocusing on SP-Sephadex, followed by reversed-phase high-performance liquid chromatography. Charybdotoxin is shown to be a highly basic protein with a mass of 10 kDa. Under our standard assay conditions, the purified toxin inhibits the Ca2+-activated K+ channel with an apparent dissociation constant of 3.5 nM. The protein is unusually stable, with inhibitory potency being insensitive to boiling or exposure to organic solvents. The toxin's activity is sensitive to chymotrypsin treatment and to acylation of lysine groups. The protein may be radioiodinated without loss of activity. 相似文献
2.
Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+ -activated K+ channel 总被引:4,自引:8,他引:4 下载免费PDF全文
In this study, high-conductance Ca2+-activated K+ channels from rat skeletal muscle were incorporated into planar phospholipid bilayers, and discrete blockade of single channels by Ba2+ was studied. With 150 mM K+ held constant in the internal solution, increasing external K+ over the range 100-1,000 mM raises the rate of Ba2+ dissociation. This "enhancement effect," which operates at K+ concentrations 3-4 orders of magnitude higher than those required for the "lockin" effect described previously, depends on applied voltage, saturates with K+ concentration, and is not observed with Na+. The voltage dependence of the Ba2+ off-rate varies with external K+ in a way suggesting that K+, entering the channel from the external side, forces Ba2+ dissociation to the internal solution. With K+ held fixed in the external solution, the Ba2+ off-rate decreases as internal K+ is raised over the range 0-50 mM. This "lock-in" effect is similar to that seen on the external side (Neyton and Miller, 1988), except that the internal lock-in site is of lower affinity and shows only a fivefold preference for K+ over Na+. All the results taken together argue strongly that this channel's conduction pathway contains four sites of very high affinity for K+, all of which may be simultaneously occupied under normal conducting conditions. According to this view, the mutual destabilization resulting from this high ionic occupancy leads to the unusually high conductance of this K+-specific channel. 相似文献
3.
Multi-ion conduction and selectivity in the high-conductance Ca++-activated K+ channel from skeletal muscle. 总被引:12,自引:8,他引:12 下载免费PDF全文
Open-channel ion permeation properties were investigated for Ca++-activated K+ (CaK) channels in solutions of K+ and its analogues T1+, Rb+, and NH4+. Single CaK channels were inserted into planar lipid bilayers composed of neutral phospholipids, and open-channel current-voltage (I-V) relations were measured in symmetrical and asymmetrical solutions of each of these individual ions. For all concentrations studied, the zero-voltage conductance falls in the sequence K+ greater than T1+ greater than NH4+ greater than Rb+. The shape of the I-V curve in symmetrical solutions of a single permeant ion is non-ohmic and is species-dependent. The I-V shape is sublinear for K+ and T1+ and superlinear for Rb+ and NH4+. As judged by reversal potentials under bi-ionic conditions with K+ on one side of the bilayer and the test cation on the other, the permeability sequence is T1+ greater than K+ greater than Rb+ greater than NH4+ at 300 mM, which differs from the conductance sequence. Symmetrical mixtures of K+ or NH4+ with Rb+ show a striking anomalous mole fraction behavior, i.e., a minimum in single-channel conductance when the composition of a two-ion mixture is varied at constant total ion concentration. This result is incompatible with present models that consider the CaK channel a single-ion pore. In total, the results show that the CaK channel finely discriminates among K+-like ions, exhibiting different energy profiles among these species, and that several such ions can reside simultaneously within the conduction pathway. 相似文献
4.
Multi-ion occupancy alters gating in high-conductance, Ca(2+)-activated K+ channels 总被引:1,自引:1,他引:1 下载免费PDF全文
In this study, single-channel recordings of high-conductance Ca(2+)-activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)-blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed-blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening. 相似文献
5.
6.
Single Ca2+-activated K+ channels from rat skeletal muscle plasma membranes were studied in neutral phospholipid bilayers. Channels were chemically modified by briefly exposing the external side to the carboxyl group modifying reagent trimethyloxonium (TMO). TMO modification, in a "multi-hit" fashion, reduces the single-channel conductance without affecting ion selectivity. Modification also shifts the voltage activation curve toward more depolarized voltages and reduces the affinity of the channel blocker charybdotoxin (CTX). CTX, bound to the channel during the TMO exposure, prevents the TMO-induced reduction of the single-channel conductance. These data suggest that the high-conductance Ca2+-activated K+ channel has carboxyl groups on its external surface. These groups influence ion conduction, gating, and the binding of CTX. 相似文献
7.
Mechanism of charybdotoxin block of the high-conductance, Ca2+- activated K+ channel 总被引:9,自引:2,他引:9 下载免费PDF全文
The mechanism of charybdotoxin (CTX) block of single Ca2+-activated K+ channels from rat muscle was studied in planar lipid bilayers. CTX blocks the channel from the external solution, and K+ in the internal solution specifically relieves toxin block. The effect of K+ is due solely to an enhancement of the CTX dissociation rate. As internal K+ is raised, the CTX dissociation rate increases in a rectangular hyperbolic fashion from a minimum value at low K+ of 0.01 s-1 to a maximum value of approximately 0.2 s-1. As the membrane is depolarized, internal K+ more effectively accelerates CTX dissociation. As the membrane is hyperpolarized, the toxin dissociation rate approaches 0.01 s-1, regardless of the K+ concentration. When internal K+ is replaced by Na+, CTX dissociation is no longer voltage dependent. The permeant ion Rb also accelerates toxin dissociation from the internal solution, while the impermeant ions Li, Na, Cs, and arginine do not. These results argue that K ions can enter the CTX-blocked channel from the internal solution to reach a site located nearly all the way through the conduction pathway; when K+ occupies this site, CTX is destabilized on its blocking site by approximately 1.8 kcal/mol. The most natural way to accommodate these conclusions is to assume that CTX physically plugs the channel's externally facing mouth. 相似文献
8.
The sensitivity to Ca2+ of the Ca2+-dependent K+ channel can be increased by the artificial electron donor system ascorbate + phenazine-methosulphate in a variety of animal cells. In the human erythrocyte the shift from the 'low' to the 'high-affinity' state seems to depend on the reduction of a membrane component accepting 2 electrons and with an standard redox potential (pH 7.5) of about 47 mV. The relevance of this redox modulation under physiological circumstances is unknown at the moment. 相似文献
9.
10.
11.
12.
Role of Ca2+-activated K+ channels in human erythrocyte apoptosis 总被引:10,自引:0,他引:10
Lang PA Kaiser S Myssina S Wieder T Lang F Huber SM 《American journal of physiology. Cell physiology》2003,285(6):C1553-C1560
Exposure of erythrocytes to the Ca2+ ionophore ionomycin has recently been shown to induce cell shrinkage, cell membrane blebbing, and breakdown of phosphatidylserine asymmetry, all features typical of apoptosis of nucleated cells. Although breakdown of phosphatidylserine asymmetry is thought to result from activation of a Ca2+-sensitive scramblase, the mechanism and role of cell shrinkage have not been explored. The present study was performed to test whether ionomycin-induced activation of Ca2+-sensitive Gardos K+ channels and subsequent cell shrinkage participate in ionomycin-induced breakdown of phosphatidylserine asymmetry of human erythrocytes. According to on-cell patch-clamp experiments, ionomycin (1 µM) induces activation of inwardly rectifying K+-selective channels in the erythrocyte membrane. Fluorescence-activated cell sorter analysis reveals that ionomycin leads to a significant decrease of forward scatter, reflecting cell volume, an effect blunted by an increase of extracellular K+ concentration to 25 mM and exposure to the Gardos K+ channel blockers charybdotoxin (230 nM) and clotrimazole (5 µM). As reflected by annexin binding, breakdown of phosphatidylserine asymmetry is triggered by ionomycin, an effect again blunted, but not abolished, by an increase of extracellular K+ concentration and exposure to charybdotoxin (230 nM) and clotrimazole (5 µM). Similar to ionomycin, glucose depletion leads (within 55 h) to annexin binding of erythrocytes, an effect again partially reversed by an increase of extracellular K+ concentration and exposure to charybdotoxin. K-562 human erythroleukemia cells similarly respond to ionomycin with cell shrinkage and annexin binding, effects blunted by antisense, but not sense, oligonucleotides against the small-conductance Ca2+-activated K+ channel isoform hSK4 (KCNN4). The experiments disclose a novel functional role of Ca2+-sensitive K+ channels in erythrocytes, i.e., their participation in regulation of erythrocyte apoptosis. cell volume; charybdotoxin; osmolarity; phosphatidylserine; annexin 相似文献
13.
目的:观察新生SD大鼠原代培养皮层神经元的钙激活钾通道(Kca)在黎芦碱致神经元损伤模型上的激活、抑制效应.方法:采用细胞贴附和内面向外两种膜片钳单通道记录方法记录新生SD大鼠原代培养皮层神经元的Kca电生理活动.结果:黎芦碱在胞外可激活Kca.在有钙浴液内,细胞贴附式,钳制膜电位 30 mV,加入不同浓度黎芦碱(μmol/L:15、25、50、75),通道开放概率由0.005分别增加为0.014±0.003、0.085±0.010、0.132±0.016、0.059±0.006(P<0.01),在50μmol/L以内表现出浓度依赖性.无钙浴液内,细胞贴附式膜片上,钳制膜电位 50 mV,随药物浓度(μmol/L)增加为15、40、60、100时,通道开放概率由0.005分别增加为0.014±0.010、0.113±0.006、0.141±0.004、0 295±0.009(P<0.05).6例内面向外式膜片上,钳制膜电位 40 mV,分别加入黎芦碱25 μmol/L、50μmol/L 3 min后,通道开放概率由0.011±0.008分别增加为0.010±0.010、0.012±0.007(P>0.05).黎芦碱在胞内Kca开放概率,平均开放/关闭时间,电流幅值均无明显变化.结论:黎芦碱通过影响胞内游离钙水平间接调节Kca,在缺血缺氧早期,胞内游离钙增高激活Kca开放. 相似文献
14.
We found that vanadate-induced 45Ca2+ uptake by red cells is maximal at 25 degrees C. At this temperature, the Cai-induced increase of the K+ permeability (the Gárdos effect) shows a lag (up to 8 min) which is not observed at 37 degrees C. This cannot be explained by the lack of availability of Ca2+ for the Ca2(+)-activated K+ channel, and suggests that its activation by Ca2+ is mediated by a temperature-dependent mechanism which remains unknown so far. The lag is not observed when the Gárdos effect was initiated by propranolol. This shows that the putative temperature-dependent step is different from chloride transport. 相似文献
15.
H A Pershadsingh R D Gale D M Delfert J M McDonald 《Biochemical and biophysical research communications》1986,135(3):934-941
Increased membrane permeability (conductance) that is specific for K+ and directly activated by Ca2+ ions, has been identified in isolated adipocyte plasma membranes using the K+ analogue, 86Rb+. Activation of these K+ conductance pathways (channels) by free Ca2+ was concentration dependent with a half-maximal effect occurring at 32 +/- 4 nM free Ca2+ (n = 7). Addition of calmodulin further enhanced the Ca2+ activating effect on 86Rb+ uptake (K+ channel activity). Ca2+-dependent 86Rb+ uptake was inhibited by tetraethylammonium ion and low pH. It is concluded that the adipocyte plasma membrane possesses K+ channels that are activated by Ca2+ and amplified by calmodulin. 相似文献
16.
Bent Vestergaard-Bogind Per Stampe Palle Christophersen 《The Journal of membrane biology》1985,87(1):67-75
Summary We have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Vesicles prepared and assayed with a recently modified procedure (Garty & Asher, 1985) exhibit large, rheogenic, amiloridesensitive fluxes. Of the total22Na uptake measured 0.5–2.0 min after introducing tracer, 80±4% (mean±se,n=9) is blocked by the diuretic with aK
1
of 2×10–8
m. Thus, this amiloridesensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0–8.0 had no effect on sodium transport; this result suggests that variation of intracellular pHin vivo has no direct apical effect on modulating sodium uptake. On the other hand,22Na was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of22Na efflux was noted at external Na+ concentrations of both 0.2 m and 53mm.These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. We suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles. 相似文献
17.
Polymyxin B (PXB), a cyclic peptide antibiotic, in concentrations 0.1-3.0 mg/ml (0.08-4.0 mmol/l), inhibited the K+ efflux induced by opening of the Ca2+-activated K+ channel (the Gárdos effect) in intact human red blood cells. The inhibition was observed when the Gárdos effect was elicited by Ca2+ in the presence of vanadate, or propranolol, in ATP-depleted cells, and in A23187-treated cells. The inhibition of the Gárdos effect is caused neither by the inhibition of the anion channel by PXB nor by the inhibition of Ca2+ entry. It can be ascribed to the inhibition of the Ca2+-activated K+ channel. The mechanism of the inhibition remains to be elucidated. 相似文献
18.
Mechanisms of Cs+ blockade in a Ca2+-activated K+ channel from smooth muscle. 总被引:6,自引:2,他引:6 下载免费PDF全文
Large unitary conductance Ca2+-activated K+ channels from smooth muscle membrane were incorporated into phospholipid planar bilayers, and the blockade induced by internally and externally applied Cs+ was characterized. Internal Cs+ blockade is voltage dependent and can be explained on the basis of a Cs+ binding to a site that senses 54% of the applied voltage, with an apparent dissociation constant, Kd(0), of 70 mM. On the other hand, external Cs+ blocks the channel in micromolar amounts, and the voltage dependence of blockade is a function of Cs+ concentration. The fractional electrical distance can be as large as 1.4 at 10 mM Cs+. This last result suggests that the channel behaves as a multi-ion pore. At large negative voltages the I-V relationships in the presence of external Cs+ show an upturn, indicating relief of Cs+ block. External Cs+ blockade is relieved by increasing the internal K+ concentration, but can be enhanced by increasing the external K+. All the characteristics of external Cs+ block can be explained by a model that incorporates a "knock-on" of Cs+ by K+. 相似文献
19.
Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers 总被引:6,自引:0,他引:6
Edward Moczydlowski Osvaldo Alvarez Cecilia Vergara Ramon Latorre 《The Journal of membrane biology》1985,83(3):273-282
Summary A Ca-activated, K-selective channel from plasma membrane of rat skeletal muscle was studied in artificial lipid bilayers formed from either phosphatidylethanolamine (PE) or phosphatidylserine (PS). In PE, the single-channel conductance exhibited a complex dependence on symmetrical K+ concentration that could not be described by simple Michaelis-Menten saturation. At low K+ concentrations the channel conductance was higher in PS membranes, but approached the same conductance observed in PE above 0.4m KCl. At the same Ca2+ concentration and voltage, the probability of channel opening was significantly greater in PS than PE. The differences in the conduction and gating, observed in the two lipids, can be explained by the negative surface charge of PS compared to the neutral PE membrane. Model calculations of the expected concentrations of K+ and Ca2+ at various distances from a PS membrane surface, using Gouy-Chapman-Stern theory, suggest that the K+-conduction and Ca2+-activation sites sense a similar fraction of the surface potential, equivalent to the local electrostatic potential at a distance of 9 Å from the surface. 相似文献
20.
Beisel KW Rocha-Sanchez SM Ziegenbein SJ Morris KA Kai C Kawai J Carninci P Hayashizaki Y Davis RL 《Gene》2007,386(1-2):11-23