首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complementary DNA encoding DNA-dependent ATPase Q1 possessing DNA helicase activity, which is the major DNA-dependent ATPase in human cell extracts, was cloned from a cDNA library of human KB cells. The predicted amino acid sequence has seven consecutive motifs conserved in the RNA and DNA helicase super family and DNA helicase Q1 belongs to DEXH helicase family. A homology search indicated that helicase Q1 had 47% homology in the seven conserved regions with Escherichia coli RecQ protein. Three RNA bands of 4.0, 3.3, and 2.2 kilobases were detected in HeLa cells by Northern blotting. Analysis of the genomic DNA indicated the presence of a homologous gene in mouse cells. The DNA helicase Q1 gene was localized on the short arm of human chromosome 12 at 12p12.  相似文献   

2.
A temperature-sensitive mutant defective in DNA replication, tsFT848, was isolated from the mouse mammary carcinoma cell line FM3A. In mutant cells, the DNA-dependent ATPase activity of DNA helicase B, which is a major DNA-dependent ATPase in wild-type cells, decreased at the nonpermissive temperature of 39 degrees C. DNA synthesis in tsFT848 cells at the nonpermissive temperature was analyzed in detail. DNA synthesis measured by incorporation of [3H]thymidine decreased to about 50% and less than 10% of the initial level at 8 and 12 h, respectively. The decrease in the level of thymidine incorporation correlated with a decrease in the number of silver grains in individual nuclei but not with the number of cells with labeled nuclei. DNA fiber autoradiography revealed that the DNA chain elongation rate did not decrease even after an incubation for 10 h at 39 degrees C, suggesting that initiation of DNA replication at the origin of replicons is impaired in the mutant cells. The decrease in DNA-synthesizing ability coincided with a decrease in the level of the DNA-dependent ATPase activity of DNA helicase B. Partially purified DNA helicase B from tsFT848 cells was more heat sensitive than that from wild-type cells. Inactivation of DNA-dependent ATPase activity of DNA helicase B from mutant cells was considerably reduced by adding DNA to the medium used for preincubation, indicating that the DNA helicase of mutant cells is stabilized by binding to DNA.  相似文献   

3.
4.
The Escherichia coli dnaB replication protein is a DNA helicase   总被引:55,自引:0,他引:55  
Genetic and biochemical analyses indicate that the Escherichia coli dnaB replication protein functions in the propagation of replication forks in the bacterial chromosome. We have found that the dnaB protein is a DNA helicase that is capable of unwinding extensive stretches of double-stranded DNA. We constructed a partially duplex DNA substrate, containing two preformed forks of single-stranded DNA, which was used to characterize this helicase activity. The dnaB helicase depends on the presence of a hydrolyzable ribonucleoside triphosphate, is maximally stimulated by a combination of E. coli single-stranded DNA-binding protein and E. coli primase, is inhibited by antibody directed against dnaB protein, and is inhibited by prior coating of the single-stranded regions of the helicase substrate with the E. coli single-stranded DNA-binding protein. It was determined that the dnaB protein moves 5' to 3' along single-stranded DNA, apparently in a processive fashion. To invade the duplex portion of the helicase substrate, the dnaB protein requires a 3'-terminal extension of single-stranded DNA in the strand to which it is not bound. Under optimal conditions at 30 degrees C, greater than 1 kilobase pair of duplex DNA can be unwound within 30 s. Based on these findings and other available data, we propose that the dnaB protein is the primary replicative helicase of E. coli and that it actively and processively migrates along the lagging strand template, serving both to unwind the DNA duplex in advance of the leading strand and to potentiate synthesis by the bacterial primase of RNA primers for the nascent (Okazaki) fragments of the lagging strand.  相似文献   

5.
We have purified DNA polymerase alpha from a temperature-sensitive mutant cell line of mouse FM3A cells, tsFT20, that shows temperature-sensitive activity of DNA polymerase alpha (Murakami, Y., Yasuda, H., Miyazawa, H., Hanaoka, F., and Yamada, M. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1761-1765). The purified enzyme was composed of two polypeptides with the same apparent molecular weights as those of purified DNA polymerase alpha from the parental strain, FM3A (Mr 180,000 and 68,000). Heat inactivation experiments revealed that this purified DNA polymerase alpha from tsFT20 cells was more heat-labile than the wild-type enzyme. We have also purified primase from both ts-FT20 cells and wild-type cells. Both primase fractions consist of two polypeptides with molecular weights of 54,000 and 46,000. No difference was observed between the heat labilities of the primases from tsFT20 cells and wild-type cells. Comparisons of wild-type and mutant polymerase indicated that the temperature-sensitive mutation in DNA polymerase alpha from tsFT20 cells affect the dCTP-binding site of the enzyme. The mutation also changed the optimum pH and the optimum KCl concentration of the enzyme.  相似文献   

6.
One spontaneous and four N-methyl-N'-nitro-N-nitrosoguanidine-induced revertants of a mouse FM3A mutant, tsTF20, which has heat-labile DNA polymerase alpha activity and cannot grow at 39 degrees C, were isolated and characterized with respect to the thermolability of their DNA polymerase alpha activity, the intracellular level of enzyme activity, growth rate, cell cycle progression, and frequency of initiation of DNA replication at the origin of replicons. DNA polymerase alpha activity in the extracts from the revertant cells showed partial recovery of heat stability. The intracellular level of enzyme activity of the revertant cells was lower than that of wild-type cells even at 33 degrees C. The level of enzyme activity in the revertant cells decreased considerably after a temperature upshift to 39 degrees C, but the DNA synthesizing ability of these cells did not decrease as much as the level of enzyme activity. The growth rates of the wild-type and revertant lines were almost the same at 33 degrees C. At 39 degrees C, the rate for the wild-type increased considerably compared to that at 33 degrees C, while little difference in the growth rates of the revertant lines was observed at the two temperatures. Therefore, the doubling times of the revertant cells were relatively increased compared to those of wild-type cells cultured at the restrictive temperature. Flow microfluorometric analysis and cell cycle analysis to measure labeled mitosis revealed that the increase in the doubling time was due mainly to the increase in the duration of the S phase. Analysis of the center-to-center distance between replicons by DNA fiber autoradiography indicated that the frequency of replicon initiation per unit length DNA at a given time was reduced in the revertant cells growing at 39 degrees C.  相似文献   

7.
tsFT20 cells derived from a mouse mammary carcinoma cell line FM3A have temperature-sensitive DNA polymerase alpha activity (Murakami, Y., Yasuda, H., Miyazawa, H., Hanaoka, F., and Yamada, M. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1761-1765). DNA replication in tsFT20 cells at the restrictive temperature (39 degrees C) has been characterized in detail. DNA-synthesizing ability of these cells was measured by [3H] thymidine incorporation and autoradiography. The incorporation of [3H]thymidine decreased rapidly after temperature shift-up, and the incorporation was less than 20% of the initial level after 4 h at 39 degrees C. The rapid decrease correlated well with the decrease in the grain number in the individual nucleus but not with the number of cells with labeled nuclei. Alkaline sucrose gradient sedimentation analysis and DNA fiber autoradiography revealed that DNA chain elongation proceeded normally within a replicon in the temperature-sensitive cells incubated at the restrictive temperature and the DNA elongation rate did not change during the incubation at the restrictive temperature up to at least 6 h. On the other hand, the maturation of replicon-sized DNA to higher molecular weight DNA was retarded or inhibited in the temperature-sensitive cells at the restrictive temperature. The analysis of the center to center distance between replicons by DNA fiber autoradiography revealed that the frequency of replicon initiation decreased in tsFT20 cells at 39 degrees C.  相似文献   

8.
tsFT20 cells derived from mouse FM3A cells are DNA temperature-sensitive mutants, which have heat-labile DNA polymerase alpha activity. When tsFT20 cells were incubated at restrictive temperatures, intracellular levels of DNA polymerase alpha activity changed biphasically, showing an initial fast decrease (phase I) and a subsequent slow decrease (phase II). The activity of DNA polymerase alpha from tsFT20 cells cultured at a permissive temperature (33 degrees C) was greatly increased by the addition of glycerol or ethylene glycol to the reaction mixture, while little increase in enzyme activity was observed at any concentration of glycerol or ethylene glycol tested with the enzyme from the cells cultured at a restrictive temperature (39 degrees C) for 8 h (phase II). The activity of DNA polymerase alpha from wild-type cells was also increased by the addition of glycerol but the increase was much less than that in the tsFT20 cells. An in vitro preincubation experiment showed that DNA polymerase alpha from tsFT20 cells cultured at 33 degrees C very rapidly lost its ability to be stimulated by glycerol. Furthermore, the experiment using the extracts prepared from tsFT20 cells cultured at 39 degrees C for various periods showed that the ability to be stimulated by glycerol decreased with the duration of incubation time at 39 degrees C. DNA polymerase alpha from the revertants, which can grow at 39 degrees C and exhibit a partial recovery in heat stability of DNA polymerase alpha activity, showed an intermediate response to glycerol, between those of DNA polymerase alpha from tsFT20 and from the wild-type cells. Finally, it was observed that the level of enzyme activity that can be stimulated by glycerol correlated well with the DNA synthesizing ability of tsFT20 cells.  相似文献   

9.
The Escherichia coli AlkB protein is involved in protecting cells against mutation and cell death induced specifically by SN2-type alkylating agents such as methyl methanesulfonate (MMS). A human cDNA encoding a polypeptide homologous to E.coli AlkB was discovered by searching a database of expressed sequence tags (ESTs) derived from high throughput cDNA sequencing. The full-length human AlkB homolog (hABH) cDNA clone contains a 924 bp open reading frame encoding a 34 kDa protein which is 52% similar and 23% identical to E.coli AlkB. The hABH gene, which maps to chromosome 14q24, was ubiquitously expressed in 16 human tissues examined. When hABH was expressed in E.coli alkB mutant cells partial rescue of the cells from MMS-induced cell death occurred. Under the conditions used expression of hABH in skin fibroblasts was not regulated by treatment with MMS. Our findings show that the AlkB protein is structurally and functionally conserved from bacteria to human, but its regulation may have diverged during evolution.  相似文献   

10.
We have cloned a DNA that is complementary to the messenger RNA that encodes human pancreatic elastase 2 from a human pancreatic cDNA library using a cloned cDNA for rat pancreatic elastase 2 messenger RNA. This complementary DNA contains the entire protein coding region of 807 nucleotides which encodes preproelastase of 269 amino acids, and 4 and 82 nucleotides of the 5'- and 3'-untranslated sequences, respectively. When this deduced amino acid sequence was compared with known amino acid sequences it showed 82% homology with rat pancreatic elastase 2. This deduced sequence also contains a 16-amino-acid peptide identical with the N-terminal sequence determined for native human pancreatic proelastase 2. Taking the above findings together, we conclude that the cloned cDNA encodes a mature enzyme of 241 amino acids including 16 and 12 amino acids for a signal peptide and an activation peptide, respectively. Moreover, the predicted key amino acid residues involved in determining the substrate specificity of mammalian pancreatic elastase 2 are retained in the human enzyme. Cloned human pancreatic elastase 2 cDNA was expressed in E. coli as a mature and pro-form protein. Both resulting proteins showed immunoreactivity toward anti-elastase serum and enzymatic activity. We have also cloned and sequenced a porcine pancreatic elastase 2 cDNA.  相似文献   

11.
12.
Two proteins have been identified which stimulate a mutant form of dnaA protein in replication of plasmids containing the chromosomal origin, oriC. One of these is dnaK protein by the criteria of (i) absence of stimulatory activity in enzyme fractions from dnaK mutants, (ii) elevated levels of stimulatory activity in fractions from a dnaK protein overproducer, (iii) comigration of the stimulatory protein with authentic dnaK protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and (iv) replacement of this stimulatory protein by dnaK protein in stimulation assays. The stimulatory effect of dnaK protein on dnaA46 protein in replication suggests that this interaction, occurring prior to its action in DNA replication, may regulate its activity.  相似文献   

13.
14.
Summary We previously demonstrated that the E. coli protein, H-NS (or Hla), encoded by the gene hns (or osmZ or bglY preferentially recognizes curved DNA sequences in vitro. In order to gain further insight into the complex function of H-NS and the significance of DNA curvature, we constructed a structurally defined hns deletion mutant on the E. coli chromosome. The hns deletion mutant thus obtained showed a variety of phenotypes previously for other lesions in hns. It was further demonstrated that, in this hns deletion background, numerous E. coli cellular proteins were either strongly expressed or remarkably repressed, as compared to their expression levels in wild-type cells.  相似文献   

15.
16.
17.
18.
We have cloned a cDNA encoding Luciola lateralis (a common firefly in Japan) luciferase from a cDNA library of lantern poly(A)+ RNA, using a cDNA of L. cruciata (another common firefly in Japan) luciferase as a probe. The primary structure of L. lateralis luciferase deduced from the nucleotide sequence was shown to consist of 548 amino acids with a molecular weight of 60,132. Sequence comparison indicates that L. lateralis luciferase has significant sequence identity (94%) to L. cruciata luciferase, and that it has less sequence similarity (67%) to Photinus pyralis (a North American firefly) luciferase. The isolated cDNA clone, when introduced into Escherichia coli, directed the synthesis of enzymatically active luciferase under the control of the lacZ promoter.  相似文献   

19.
We have sequenced a cDNA of urinary stone protein. cDNA sequences show complete homology between urinary stone protein and human osteopontin (bone sialoprotein) (nucleotides 265-886 and 1183-1424). Osteopontin is a recently discovered bone matrix protein which has been implicated in mediating mineral formation within bone extracellular matrix. This result shows that osteopontin is presumably involved in stone formation as stone matrix.  相似文献   

20.
Escherichia coli contains two type 1 topoisomerases, topoisomerase I and III. Although topoisomerase III can be purified as a potent decatenase, its role in DNA metabolism is unclear. In order to address this issue, the gene encoding topoisomerase III from E. coli has been molecularly cloned and its DNA sequence determined. The cloned fragment of DNA contains an open reading frame that can encode a polypeptide of 73.2 kDa. The first 20 amino acids of this open reading frame are identical to those of topoisomerase III as determined by amino-terminal gas-phase microsequencing. Expression of the polypeptide encoded by this open reading frame, using a bacteriophage T7 transient expression system, results in the accumulation of a 74-kDa polypeptide. Soluble extracts prepared from cells overexpressing this gene product show a dramatic increase in topoisomerase activity when compared with control extracts. We propose that this gene be designated topB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号