首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Targeting DNA repair with poly(ADP-ribose) polymerase (PARP) inhibitors has shown a broad range of anti-tumor activity in patients with advanced malignancies with and without BRCA deficiency. It remains unclear what role p53 plays in response to PARP inhibition in BRCA-proficient cancer cells treated with DNA damaging agents. Using gene expression microarray analysis, we find that DNA damage response (DDR) pathways elicited by veliparib (ABT-888), a PARP inhibitor, plus topotecan comprise the G1/S checkpoint, ATM, and p53 signaling pathways in p53-wildtype cancer cell lines and BRCA1, BRCA2 and ATR pathway in p53-mutant lines. In contrast, topotecan alone induces the G1/S checkpoint pathway in p53-wildtype lines and not in p53-mutant cells. These responses are coupled with G2/G1 checkpoint effectors p21CDKN1A upregulation, and Chk1 and Chk2 activation. The drug combination enhances G2 cell cycle arrest, apoptosis and a marked increase in cell death relative to topotecan alone in p53-wildtype and p53-mutant or -null cells. We also show that the checkpoint kinase inhibitor UCN-01 abolishes the G2 arrest induced by the veliparib and topotecan combination and further increases cell death in both p53-wildtype and -mutant cells. Collectively, PARP inhibition by veliparib enhances DDR and cell death in BRCA-proficient cancer cells in a p53-dependent and -independent fashion. Abrogating the cell-cycle arrest induced by PARP inhibition plus chemotherapeutics may be a strategy in the treatment of BRCA-proficient cancer.  相似文献   

5.
Cell cycle checkpoints and their impact on anticancer therapeutic strategies   总被引:15,自引:0,他引:15  
Cells contain numerous pathways designed to protect them from the genomic instability or toxicity that can result when their DNA is damaged. The p53 tumor suppressor is particularly important for regulating passage through G1 phase of the cell cycle, while other checkpoint regulators are important for arrest in S and G2 phase. Tumor cells often exhibit defects in these checkpoint proteins, which can lead to hypersensitivity; proteins in this class include ataxia-telangiectasia mutatated (ATM), Meiotic recanbination 11 (Mre11), Nijmegen breakage syndrome 1 (Nbs 1), breast cancer susceptibility genes 1 and 2 (BRCA1), and (BRCA2). Consequently, tumors should be assessed for these specific defects, and specific therapy prescribed that has high probability of inducing response. Tumors defective in p53 are frequently considered resistant to apoptosis, yet this defect also provides an opportunity for targeted therapy. When their DNA is damaged, p53-defective tumor cells preferentially arrest in S or G2 phase where they are susceptible to checkpoint inhibitors such as caffeine and UCN-01. These inhibitors preferentially abrogate cell cycle arrest in p53-defective cells, driving them through a lethal mitosis. Wild type p53 can prevent abrogation of arrest by elevating levels of p21(waf1) and decreasing levels of cyclins A and B. During tumorigenesis, tumor cells frequently loose checkpoint controls and this facilitates the development of the tumor. However, these defects also represent an Achilles heel that can be targeted to improve current therapeutic strategies.  相似文献   

6.
7.
The p53 tumor suppressor gene responds to cellular stress by activating either cell cycle arrest or apoptosis. A growing number of target genes involved in each of these pathways have been identified. However, the mechanism by which the apoptosis versus arrest decision is made remains to be elucidated. Perp is a proapoptotic target gene of p53 expressed to high levels in apoptotic cells compared with those undergoing cell cycle arrest. This pattern of expression is unusual among p53 target genes, many of which are induced to similar levels during arrest and apoptosis. Here, we describe the regulation of the Perp gene by p53 through at least three response elements in the Perp promoter and first intron. These sites are occupied in vivo in E1A-expressing mouse embryo fibroblasts undergoing apoptosis but not cell cycle arrest, in contrast to the p21 5' response element, which is occupied during both. The apoptosis-deficient p53 point mutant, p53V143A, displays a selective deficit in binding to the Perp elements, demonstrating that p53 can distinguish between Perp and p21 at the level of DNA binding. These results provide mechanistic insight into the selective expression of Perp during apoptosis and may provide a useful model for studying the p53-dependent cell cycle arrest versus apoptosis decision.  相似文献   

8.
Targeting DNA repair with poly(ADP-ribose) polymerase (PARP) inhibitors has shown a broad range of anti-tumor activity in patients with advanced malignancies with and without BRCA deficiency. It remains unclear what role p53 plays in response to PARP inhibition in BRCA-proficient cancer cells treated with DNA damaging agents. Using gene expression microarray analysis, we find that DNA damage response (DDR) pathways elicited by veliparib (ABT-888), a PARP inhibitor, plus topotecan comprise the G1/S checkpoint, ATM and p53 signaling pathways in p53-wild-type cancer cell lines and BRCA1, BRCA2 and ATR pathway in p53-mutant lines. In contrast, topotecan alone induces the G1/S checkpoint pathway in p53 wild-type lines and not in p53-mutant cells. These responses are coupled with G2/G1 checkpoint effectors p21CDKN1A upregulation, and Chk1 and Chk2 activation. The drug combination enhances G2 cell cycle arrest, apoptosis and a marked increase in cell death relative to topotecan alone in p53-wild-type and p53-mutant or -null cells. We also show that the checkpoint kinase inhibitor UCN-01 abolishes the G2 arrest induced by the veliparib and topotecan combination and further increases cell death in both p53-wild-type and -mutant cells. Collectively, PARP inhibition by veliparib enhances DDR and cell death in BRCA-proficient cancer cells in a p53-dependent and -independent fashion. Abrogating the cell cycle arrest induced by PARP inhibition plus chemotherapeutics may be a strategy in the treatment of BRCA-proficient cancer.Key words: DNA damaging agent, G2 arrest, microarray, PARP inhibition, p53, topotecan, veliparib (ABT-888)  相似文献   

9.
10.
11.
12.
13.
p53 induces both growth arrest and apoptosis in cancer cells. To clarify whether the level of p53 expression determines the response of small cell lung carcinoma (SCLC) cells, we assessed the effect of various p53 levels on a p53-null SCLC cell line, N417, using a tetracycline (Tc)-regulated inducible p53 expression system. Apoptosis was induced in SCLC cells with high p53 expression. Although low levels of p53 induced G1 arrest accompanied by p21 expression, cells with G1 arrest seemed to undergo apoptosis after further cultivation. Expression of exogenous p21 induced G1 arrest but not apoptosis in SCLC cells, suggesting that p53-mediated G1 arrest was induced through p21 expression. Moreover, high level of p53 expression down-regulated Bcl-2 expression in SCLC cells, while Bax was consistently expressed irrespective to the level of p53 expression. These results suggest that p53-mediated apoptosis and G1 arrest depend on level of p53 expression in SCLC cells and that the relative dominancy of Bax to Bcl-2 is involved in the induction of apoptosis by high level of p53 expression.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号