共查询到20条相似文献,搜索用时 11 毫秒
1.
Kawasaki K Yoneyama M Murata-Kamiya N Harashima H Kojima C Ito Y Kamiya H Mishima M 《Biomolecular NMR assignments》2012,6(1):1-4
Escherichia coli Orf135 protein is thought to be an enzyme that efficiently hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP,
8-hydroxy-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP, thus preventing mutations in cells caused by
unfavorable base pairing. Nucleotide pool sanitization by Orf135 is important since organisms are continually subjected to
potential damage by reactive oxygen species produced during respiration. It is known that the frequency of spontaneous and
H2O2-induced mutations is two to threefold higher in the orf135
- strain compared with the wild-type. Orf135 is a member of the Nudix family of proteins which hydrolyze nucleoside diphosphate
derivatives. Nudix hydrolases are characterized by the presence of a conserved motif, although they recognize various substrates
and possess a variety of substrate binding pockets. We are interested in delineating the mechanism by which Orf135 recognizes
oxidatively damaged nucleotides. To this end, we are investigating the tertiary structure of Orf135 and its interaction with
substrate using NMR. Herein, we report on the 1H, 13C and 15N resonance assignments of Orf135, which should contribute towards a structural understanding of Orf135 and its interaction
with substrate. 相似文献
2.
3.
Ronald A. Venters Chih-Chin Huang Bennett T. Farmer II Ronald Trolard Leonard D. Spicer Carol A. Fierke 《Journal of biomolecular NMR》1995,5(4):339-344
Summary The protein human carbonic anhydrase II (HCA II) has been isotopically labeled with 2H, 13C and 15N for high-resolution NMR assignment studies and pulse sequence development. To increase the sensitivity of several key 1H/13C/15N triple-resonance correlation experiments, 2H has been incorporated into HCA II in order to decrease the rates of 13C and 1HN T2 relaxation. NMR quantities of protein with essentially complete aliphatic 2H incorporation have been obtained by growth of E. coli in defined media containing D2O, [1,2-13C2, 99%] sodium acetate, and [15N, 99%] ammonium chloride. Complete aliphatic deuterium enrichment is optimal for 13C and 15N backbone NMR assignment studies, since the 13C and 1HN T2 relaxation times and, therefore, sensitivity are maximized. In addition, complete aliphatic deuteration increases both resolution and sensitivity by eliminating the differential 2H isotopic shift observed for partially deuterated CHnDm moieties. 相似文献
4.
Tatyana V Ovchinnikova Zakhar O Shenkarev Zoya A Yakimenko Natalia V Svishcheva Andrey A Tagaev Dmitry A Skladnev Alexander S Arseniev 《Journal of peptide science》2003,9(11-12):817-826
Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. 相似文献
5.
The expression of functional antibody fragments in Escherichia coli enables a detailed analysis by NMR spectroscopy. This is demonstrated with the uniform labeling of an Fv-fragment (25 kDa) comprising the antigen binding site of an antibody against 2-phenyloxazolone with 15N and 13C. The antigen-complexed Fv-fragment was analysed for a potential assignment by heteronuclear multi-dimensional NMR spectroscopy. For almost all backbone amides 15N/1H crosspeaks and for 80% of them TOCSY crosspeaks were observed. In a 13C-edited-HCCH-2D experiment 17 out of 18 threonine spin-systems were identified. Thus detailed assignments are possible, but some amino acid specific labeling in addition to uniform labeling will be required for complete assignments of Fv-fragments. 相似文献
6.
C Niu R D Bertrand H Shindo J S Cohen 《Journal of biochemical and biophysical methods》1979,1(3):135-143
Comparative 13C--15N coupling constants are reported for the linear dipeptide tBoc-L-[U-13C]Ala-[15N]GlyOMe and the corresponding cyclic diketopiperazine, both in dimethylsulfoxide (DMSO) and, upon removal of the tBoc group, in water solutions. Spectra were obtained by 13C NMR and by the first application of J cross-polarization (JCP) 15N NMR, which greatly reduces the time required to accumulate 15N NMR spectra. In DMSO there was evidence for the formation of complexed species which were not present in water. The values obtained for the cross-peptide bond coupling constant 2J13C alpha--15N were consistently less (by 2.2 Hz in DMSO, 4.3 Hz in water) for the cyclic than for the linear peptide, which may be related to the cross-peptide bond conformation. The 15N resonance for the cyclic peptide was shifted only 2 ppm downfield from the linear peptide chemical shift value in both solvents. 相似文献
7.
Ross A Kessler W Krumme D Menge U Wissing J van den Heuvel J Flohé L 《Journal of biotechnology》2004,108(1):31-39
A widely applicable cultivation strategy, which reduces the costs of expensive isotopes, is designed for maximal (98-100%) incorporation of [13C] and [15N] into labelled recombinant protein expressed in Escherichia coli, allowing better assignment of the resonances for NMR studies. Isotope labelling of the culture was performed throughout the complete process, starting from preculture. Sufficient biomass is first generated in a batch phase. Upon consumption of glucose, identified by a sharp drop of on-line monitored oxygen consumption, expression is induced and cultivation is continued under glucose-limited conditions as fed-batch process. Thereby a quantitative utilisation of the most expensive component [13C]-glucose is achieved, while the approximate amount of the [15N]-ammonium chloride to be incorporated is calculated from the scheduled biomass. The usefulness of the strategy is demonstrated with production of uniformly [13C/15N]-labelled tryparedoxin of Crithidia fasciculata. Ideal isotope incorporation and product quality is documented by MALDI-TOF mass spectrometry and two- and three-dimensional NMR spectra. 相似文献
8.
Rhodanese catalyzes the sulfur-transfer reaction in which a sulfur atom is transferred from thiosulfate to cyanide by a double-displacement mechanism. During the reaction, a persulfide-intermediate form of rhodanese is generated by the reaction of a conserved active cysteine residue with thiosulfate. Escherichia coli GlpE is a prototype for the single-domain rhodanese superfamily. Though there are some studies on rhodaneses, the molecular mechanism of the catalytic activity of rhodaneses is still unclear. Herein, we report the resonance assignments of (1)H, (13)C and (15)N atoms of E. coli GlpE, which provides the basis for further structural, dynamic and functional studies of rhodaneses using NMR technique. 相似文献
9.
Sunita Ramanathan Basuthkar J Rao K V R Chary 《Biochemical and biophysical research communications》2002,290(3):928-932
A novel method is proposed for large-scale synthesis of (13)C- and (15)N-labeled DNA for NMR studies. In this methodology, endonuclease-sensitive repeat amplification (ESRA), a modified PCR strategy, has been used to amplify tandem repeats of the target DNA sequence. The design of the template is such that restriction enzyme (RE) sites separate repeats of the target sequence. The ESRA product is then cloned into a suitable vector. The Escherichia coli cells harboring the plasmid are grown in minimal medium containing [(13)C]glucose and (15)NH(4)Cl as the sole source of carbon and nitrogen, respectively. The target sequence is released by RE digestion of the plasmid, followed by purification using PAGE. Under optimized conditions, the yield ( approximately 5 mg/liter of culture) of (13)C/(15)N-labeled DNA prepared using this approach is found to be several times higher compared to other known enzymatic methods. Successful incorporation of the isotopes has been confirmed using 2D NMR techniques. 相似文献
10.
13C and 15N isotope effects have been measured for the aspartate transcarbamylase (ATCase) reaction in an effort to elucidate the chemical mechanism of this highly regulated enzyme. The observed 15(V/K(asp))H2O value for the ATCase holoenzyme at saturing carbamyl phosphate and 12 mM L-aspartate is 1.0045 at pH 7.5, and this value remains unchanged in the presence of 5 mM ATP (activator) or 5 mM CTP (inhibitor). The fact that the isotope effect is not changed by the allosteric modifiers supports the conclusion that the kinetic properties of the active form of ATCase are not influenced by ATP or CTP. The observed 15(V/K(asp)) values for the catalytic subunit of ATCase are also the same as those determined for the holoenzyme, suggesting that the chemical mechanisms of both enzyme species are the same. Quantitative analysis of 13C and 15N isotope effects in both H2O and D2O has led to the proposal of a chemical model for the ATCase reaction which involves a precatalytic conformational change to form an activated complex that facilitates deprotonation of L-aspartate by an enzyme functional group. Nucleophilic attack on the carbonyl carbon of carbamyl phosphate by the alpha-amino group of L-aspartate results in the formation of a tetrahedral intermediate. An intramolecular proton transfer leads to formation of products N-carbamyl-L-aspartate and inorganic phosphate. 相似文献
11.
Assignment of the 15N NMR spectra of reduced and oxidized Escherichia coli thioredoxin 总被引:1,自引:0,他引:1
As a necessary first step in the use of heteronuclear correlated spectra to obtain high resolution solution structures of the protein, assignment of the 15N NMR spectra of reduced and oxidized Escherichia coli thioredoxin (Mr 12,000) uniformly labeled with 15N has been performed. The 15N chemical shifts of backbone amide nitrogen atoms have been determined for both oxidation states of thioredoxin using 15N-1H correlated and two-dimensional heteronuclear single-quantum coherence (HSQC) TOCSY and NOESY spectra. The backbone assignments are complete, except for the proline imide nitrogen resonances and include Gly33, whose amide proton resonance is difficult to observe in homonuclear 1H spectra. The differences in the 15N chemical shift between oxidized and reduced thioredoxin, which occur mainly in the vicinity of the two active site cysteines, including residues distant in the amino acid sequence which form a hydrophobic surface close to the active site, are consistent with the differences observed for proton chemical shifts in earlier work on thioredoxin. 相似文献
12.
Yunchen Bi Hongwei Li Shoujin Fan Bin Xia Changwen Jin 《Biomolecular NMR assignments》2009,3(1):149-151
The mRNA degradation is an important regulatory mechanism which controls gene expression by limiting the number of translation
times. Previous studies demonstrated that this process is essential for organisms. Escherichia coli RNA pyrophosphohydrolase (RppH) is an enzyme that triggers mRNA degradation by removing the 5′ pyrophosphate, which is a
rate-determining step. In order to understand the molecular mechanism of the biological function, the structural information
of RppH is required. Herein, we report the resonance assignments of 1H, 15N, 13C atoms of the E. coli RppH. 相似文献
13.
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled
nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown
to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled
in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new
site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically
essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation
studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio
compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate
relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective
labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules. 相似文献
14.
Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. 总被引:3,自引:0,他引:3 下载免费PDF全文
E P Nikonowicz A Sirr P Legault F M Jucker L M Baer A Pardi 《Nucleic acids research》1992,20(17):4507-4513
15.
Rhodanese domain is a ubiquitous structural module commonly found in bacterial, archaeal and eukaryotic cells. Growing evidence
indicates that rhodanese domains act as the carrier of reactive sulfur atoms by forming persulfide intermediates in distinct
metabolic pathways. YgaP, a membrane protein consisting of a rhodanese domain and a C-terminal transmembrane segment, is the
only membrane-associated rhodanese in Escherichia coli. Herein, we report the resonance assignments of 1H, 13C and 15N atoms of rhodanese domain of YgaP. Totally, chemical shifts of more than 95% of the atoms were assigned. 相似文献
16.
17.
The novel concept of isotopic dynamic 13C metabolic flux analysis (ID-13C MFA) enables integrated analysis of isotopomer data from isotopic transient and/or isotopic stationary phase of a 13C labeling experiment, short-time experiments, and an extended range of applications of 13C MFA. In the presented work, an experimental and computational framework consisting of short-time 13C labeling, an integrated rapid sampling procedure, a LC-MS analytical method, numerical integration of the system of isotopomer differential equations, and estimation of metabolic fluxes was developed and applied to determine intracellular fluxes in glycolysis, pentose phosphate pathway (PPP), and citric acid cycle (TCA) in Escherichia coli grown in aerobic, glucose-limited chemostat culture at a dilution rate of D = 0.10 h(-1). Intracellular steady state concentrations were quantified for 12 metabolic intermediates. A total of 90 LC-MS mass isotopomers were quantified at sampling times t = 0, 91, 226, 346, 589 s and at isotopic stationary conditions. Isotopic stationarity was reached within 10 min in glycolytic and PPP metabolites. Consistent flux solutions were obtained by ID-13C MFA using isotopic dynamic and isotopic stationary 13C labeling data and by isotopic stationary 13C MFA (IS-13C MFA) using solely isotopic stationary data. It is demonstrated that integration of dynamic 13C labeling data increases the sensitivity of flux estimation, particularly at the glucose-6-phosphate branch point. The identified split ratio between glycolysis and PPP was 55%:44%. These results were confirmed by IS-13C MFA additionally using labeling data in proteinogenic amino acids (GC-MS) obtained after 5 h from sampled biomass. 相似文献
18.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported. 相似文献
19.
J Schaefer J R Garbow G S Jacob T M Forrest G E Wilson 《Biochemical and biophysical research communications》1986,137(2):736-741
Lyophilized whole cells of Aerococcus viridans (Gaffkya homari) grown on a synthetic medium containing D-[2-13C, 15N]Ala, or containing both L-[1-13C]Lys and D-[15N]Ala, have been examined by double cross-polarization magic-angle spinning 13C and 15N nuclear magnetic resonance. Results from the double-labeled alanine experiment confirm the absence of metabolic scrambling of alanine by A. viridans. Results from the combined single-label experiment can be used to count directly the number of adjacent L-Lys and D-Ala units in peptide chains of cell-wall peptidoglycan. This count leads to the conclusion that there are no terminal D-Ala or D-Ala-D-Ala units in uncross-linked chains of the peptidoglycan of A. viridans. 相似文献