首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the association of microsatellite polymorphisms in XRCC1, XRCC3 and XRCC5 with the development of late radiation-induced radiotherapy reactions and examines the correlation between these microsatellites and cancer incidence. Sixty-two women with cervical or endometrial cancer treated with radiotherapy were included in the study. According to the CTCAEv3.0 scale, 22 patients showed late adverse radiotherapy reactions (grade 2 or more). PCR on lymphocyte DNA followed by automated fragment analysis was performed to examine the number of tandem repeat units at each locus. No significant association was found between the repeat length at any of the microsatellites in XRCC1, XRCC3 or XRCC5 and the incidence of late radiotherapy complications. Since higher odds ratios (ORs) were found for the rare XRCC1 [AC]11 and [AC]21 repeats (OR = 2.65, P = 0.325 and OR = 8.67, P = 0.093, respectively), the possible involvement of these small and large repeats in clinical radiosensitivity cannot be completely ruled out. When specific numbers of repeats were examined, no significant correlation was found between the microsatellite repeat length in XRCC1 and XRCC5 and cancer incidence. A weak correlation between XRCC3 [AC]16 homozygotes and cancer incidence was found (OR = 2.56, P = 0.055). A large-scale multicenter study of cancer patients with a high number of radiosensitive individuals is needed to clarify the value of rare polymorphic microsatellite repeats in XRCC1 and XRCC3 as a biomarker of clinical radiosensitivity or increased cancer risk.  相似文献   

2.
Growth and development are dependent on the faithful duplication of cells. Duplication requires accurate genome replication, the repair of any DNA damage, and the precise segregation of chromosomes at mitosis; molecular checkpoints ensure the proper progression and fidelity of each stage. Loss of any of these highly conserved functions may result in genetic instability and proneness to cancer. Here we show that highly significant increases in chromosome missegregation occur in cell lines lacking the RAD51-like genes XRCC2 and XRCC3. This increased missegregation is associated with fragmentation of the centrosome, a component of the mitotic spindle, and not with loss of the spindle checkpoint. Our results show that unresolved DNA damage triggers this instability, and that XRCC2 and XRCC3 are potential tumour-suppressor genes in mammals.  相似文献   

3.
Head and neck squamous cell carcinomas (HNSCC) are a heterogenous group of tumors with a high rate of early recurrences, second primary tumors, and mortality. Despite advances in diagnosis and treatment over the past decades, the overall 5-year survival rate remains around 50%. Since the head-and neck-region is continuously exposed to potentially DNA-damaging exogenous and endogenous factors, it is reasonable to expect that the DNA repair genes play a part in the development, progression, and outcome of HNSCC. The aim of this study was to investigate the SNPs XPC A499V, XPD K751Q, XRCC1 R399Q, and XRCC3 T241M as potential risk factors and indicators of survival among Caucasian patients. One-hundred-sixty-nine patients as well as 344 healthy controls were included and genotyped with PCR–RFLP. We showed that XPC A499V was associated with increased risk of HNSCC, especially laryngeal carcinoma. Among women, XPD K751Q was associated with increased risk of oral SCC. Furthermore, XPD homozygous mutant individuals had the shortest survival time, a survival time that increased however after full dose radiotherapy. Wild-type individuals of XRCC3 T241M demonstrated an earlier age of onset. HPV-positive never smokers had lower frequencies of p53 mutation. Among HNSCC patients, HPV-positivity was significantly associated with XRCC1 R399Q homozygous mutant genotype. Moreover, combinations of putative risk alleles seemed to act synergistically, increasing the risk of HNSCC. In conclusion, our results suggest that SNPs of the DNA repair genes XPC, XPD, XRCC1, and XRCC3 may affect risk and survival of HNSCC.  相似文献   

4.
Genotype and allele-frequency distributions of the excision and homologous recombination of DNA repair genes XRCC1 (rs25487 and rs25489), XRCC3 (rs861539), XPC (rs2228001), XPD (rs13181), XPA (rs1800975) were examined in three ethnic groups from the Republic of Bashkortostan (Russia), Russians, Tatars, and Bashkirs. The data obtained were compared to those for other ethnic groups from Russia and worldwide. Statistically significant differences in the allele-frequency distribution of the XPA gene polymorphic locus rs1800975 (p = 0.03) between the samples of Russians and Tatars were demonstrated. Russians and Bashkirs differed in the allele-frequency distribution of the rs861539 polymorphic locus of the XRCC3 gene (p < 0.0001), and Tatars and Bashkirs, at the rs861539 locus of the XRCC3 gene (p < 0.0001). In Russians and Tatars from the Republic of Bashkortostan, allele frequencies at the DNA repair gene polymorphic loci examined were consistent with those in the population of Northern and Western Europe, while polymorphic allele-frequency distributions in Bashkirs was similar to that observed in the ethnic group of Gujarati Indians.  相似文献   

5.
The possible role for DNA repair deficiencies in cancer development, namely in breast cancer has been the subject of increasing interest since it has been reported that breast cancer patients might be deficient in the repair of DNA damage. Exposure to ionizing radiation has been pointed out as a risk factor for breast cancer, and the type of DNA lesions induced by this carcinogen can be repaired by homologous recombination DNA repair (HRR) pathway. To evaluate the potential modifying role of some single nucleotide polymorphisms (SNP) in HRR involved genes on the individual susceptibility to breast cancer we carried out a hospital based case–control study in a Caucasian Portuguese population (289 histological confirmed breast cancer patients and 548 control individuals). We genotyped 4 SNPs in 4 different HRR pathway genes, XRCC2 (Ex3 + 442G > A, R188H, rs3218536), XRCC3 (Ex8-5C > T, T241M, rs861539), NBS1 (Ex5-32C > G, E185Q, rs1805794) and RAD51 5′UTR (Ex1-59G > T, rs1801321), tagging 41 SNPs in these genes. The frequency of the different polymorphisms in the Portuguese control population is similar to the ones reported for other Caucasian populations, and the deviation of the Hardy–Weinberg equilibrium was only observed for the XRCC2 (Ex3 + 442G > A, R188H, rs3218536) polymorphism in the control population. The results obtained, after logistic regression analysis, did not reveal a major role of these polymorphisms on breast cancer susceptibility. However, when the population was stratified according to breast feeding (women that breast fed and women that never breast fed) it is observed, in women that never breast fed, that the heterozygous individuals for the XRCC2 (Ex3 + 442G > A, R188H, rs3218536) polymorphism have a decreased risk for breast cancer [adjusted OR = 0.45; 95% CI = 0.22–0.92] (P = 0.03). Additionally, after stratification according to menopausal status, our results suggest that post-menopausal women carrying at least one variant allele for the XRCC3 (Ex8-5C > T, T241M, rs861539) polymorphism have a lower risk for breast cancer [adjusted OR = 0.67; 95% CI, 0.47–0.94] (P = 0.03). Most of the studies suggest that breastfeeding may be responsible for 2/3 of the estimate reduction of breast cancer. The longer the duration of breastfeeding the lower the potential risk associated with breast cancer. Therefore, in our study the potential protective role of the variant allele of XRCC2 (Ex3 + 442G > A, R188H, rs3218536), in never breast fed women, might be related with a more efficient DNA repair activity.  相似文献   

6.
Association between the polymorphism of DNA repair genes XRCC1 Arg399ln and XRCC3 Thr241Met and the frequency of chromosomal aberrations in the uranium workers was studied. The Gln/Gln genotype of gene XRCC1 was associated with a significant increase in the number of chromosomal aberrations as compared to the corresponding homozygous wild type Arg/Arg (p < 0.05). The frequency of chromosomal aberrations in heterozygous carriers of the XRCC3gene Thr/Met was lower than in the homozygous carriers of the wild type Thr/Thr (p < 0.001).  相似文献   

7.
We have studied the effect of genetic polymorphisms in the DNA repair genes hOGG1, XRCC1, XRCC3, ERCC2 and the MTHFR gene in the folate metabolism on the frequencies of cells with chromosomal aberrations (CA), chromosome-type aberrations (CSA), chromatid-type aberrations (CTA), chromatid breaks (CTB) and chromatid gaps (CTG) scored in peripheral blood lymphocytes from 651 Norwegian subjects of Caucasian descendant. DNA was extracted from fixed cell suspensions. The log-linear Poisson regression model was used for the combined data which included age, smoking, occupational exposure and genotype for 449 subjects.

Our results suggest that individuals carrying the hOGG1 326Cys or the XRCC1 399Gln allele have an increased risk of chromosomal damage, while individuals carrying the XRCC1 194Trp or the ERCC2 751Gln allele have a reduced risk regardless of smoking habits and age.

Individuals carrying the XRCC1 280His allele had an increased risk of CSA which was only apparent in non-smokers. This was independent of age.

A protective effect of the XRCC3 241Met allele was only found in the older age group in non-smokers for CA, CSA and CTA, and in smokers for CSA. In the youngest age group, the opposite effect was found, with an increased risk for CA, CTA and CTG in smokers. Carrying the MTHFR 222Val allele gave an increased risk for chromosome and chromatid-type aberrations for both non-smokers and smokers, especially for individuals in the older age group, and with variable results in the youngest age group. The variables included in the different regression models accounted, however, for only 4–10% of the variation. The frequency ratio for CTG was significantly higher than for CTA and CTB for only 7 of the 43 comparisons performed. Some of the gap frequencies diverge from the trend in the CA, CSA, CTA and CTB results.  相似文献   


8.
The DNA double strand break repair gene XRCC4, an important caretaker of genome stability and XRCC3 are suggested to play an imperative role in the development of carcinogenesis. However, no evidence has been provided showing that these genes are associated with risk of urinary bladder cancer (UBC). The study was designed to examine the polymorphisms associated with two genes namely XRCC4 G1394T (rs6869366), intron 3 (rs28360317), intron 7 rs1805377 and rs2836007 and XRCC3 (rs861539 and rs1799796), respectively and investigate their role as susceptible markers for UBC risk in North Indian cohort. In this hospital-based case–control study histologically confirmed 211 UBC patients and 244 age and gender matched controls of similar ethnicity were genotyped by means of PCR-RFLP. Significant different distributions in the frequency of the XRCC4 intron 3 genotype, but not the XRCC4 G1394T or intron 7 genotypes, between the UBC and control groups were observed. XRCC4 intron 7 Del/Del conferred enhanced risk (OR 1.94; P 0.017) in UBC. Interestingly, XRCC −1394 G>T variant genotype GG was associated with reduced risk (OR 0.27; P 0.020). However, none of the four polymorphisms in XRCC4 were associated with tobacco smoking and risk of recurrence in patients treated with BCG immunotherapy. Similarly, none of the XRCC3 polymorphisms were associated with UBC susceptibility. Our results suggested that the XRCC4 intron 3 rs6869366 genotype and intron 7 rs28360317 may be associated with UBC risk and may be a novel useful marker for primary prevention and anticancer intervention.  相似文献   

9.
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DNA lesions associated with replication and is thought to be important for suppressing genomic instability. The mechanisms regulating the initiation and termination of SCR in mammalian cells are poorly understood. Previous work has implicated all the Rad51 paralogs in the initiation of gene conversion and the Rad51C/XRCC3 complex in its termination. Here, we show that hamster cells deficient in the Rad51 paralog XRCC2, a component of the Rad51B/Rad51C/Rad51D/XRCC2 complex, reveal a bias in favor of long-tract gene conversion (LTGC) during SCR. This defect is corrected by expression of wild-type XRCC2 and also by XRCC2 mutants defective in ATP binding and hydrolysis. In contrast, XRCC3-mediated homologous recombination and suppression of LTGC are dependent on ATP binding and hydrolysis. These results reveal an unexpectedly general role for Rad51 paralogs in the control of the termination of gene conversion between sister chromatids.DNA double-strand breaks (DSBs) are potentially dangerous lesions, since their misrepair may cause chromosomal translocations, gene amplifications, loss of heterozygosity (LOH), and other types of genomic instability characteristic of human cancers (7, 9, 21, 40, 76, 79). DSBs are repaired predominantly by nonhomologous end joining or homologous recombination (HR), two evolutionarily conserved DSB repair mechanisms (8, 12, 16, 33, 48, 60, 71). DSBs generated during the S or G2 phase of the cell cycle may be repaired preferentially by HR, using the intact sister chromatid as a template for repair (12, 26, 29, 32, 71). Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DSBs, which has led to the proposal that SCR protects against genomic instability, cancer, and aging. Indeed, a number of human cancer predisposition genes are implicated in SCR control (10, 24, 45, 57, 75).HR entails an initial processing of the DSB to generate a free 3′ single-stranded DNA (ssDNA) overhang (25, 48, 56). This is coupled to the loading of Rad51, the eukaryotic homolog of Escherichia coli RecA, which polymerizes to form an ssDNA-Rad51 “presynaptic” nucleoprotein filament. Formation of the presynaptic filament is tightly regulated and requires the concerted action of a large number of gene products (55, 66, 68). Rad51-coated ssDNA engages in a homology search by invading homologous duplex DNA. If sufficient homology exists between the invading and invaded strands, a triple-stranded synapse (D-loop) forms, and the 3′ end of the invading (nascent) strand is extended, using the donor as a template for gene conversion. This recombination intermediate is thought to be channeled into one of the following two major subpathways: classical gap repair or synthesis-dependent strand annealing (SDSA) (48). Gap repair entails the formation of a double Holliday junction, which may resolve into either crossover or noncrossover products. Although this is a major pathway in meiotic recombination, crossing-over is highly suppressed in somatic eukaryotic cells (26, 44, 48). Indeed, the donor DNA molecule is seldom rearranged during somatic HR, suggesting that SDSA is the major pathway for the repair of somatic DSBs (26, 44, 49, 69). SDSA terminates when the nascent strand is displaced from the D-loop and pairs with the second end of the DSB to form a noncrossover product. The mechanisms underlying displacement of the nascent strand are not well understood. However, failure to displace the nascent strand might be expected to result in the production of longer gene conversion tracts during HR (36, 44, 48, 63).Gene conversion triggered in response to a Saccharomyces cerevisiae or mammalian chromosomal DSB generally results in the copying of a short (50- to 300-bp) stretch of information from the donor (short-tract gene conversion [STGC]) (14, 47, 48, 67, 69). A minority of gene conversions in mammalian cells entail more-extensive copying, generating gene conversion tracts that are up to several kilobases in length (long-tract gene conversion [LTGC]) (26, 44, 51, 54, 64). In yeast, very long gene conversions can result from break-induced replication (BIR), a highly processive form of gene conversion in which a bona fide replication fork is thought to be established at the recombination synapse (11, 36, 37, 39, 61, 63). In contrast, SDSA does not require lagging-strand polymerases and appears to be much less processive than a conventional replication fork (37, 42, 78). BIR in yeast has been proposed to play a role in LOH in aging yeast, telomere maintenance, and palindromic gene amplification (5, 41, 52). It is unclear to what extent a BIR-like mechanism operates in mammalian cells, although BIR has been invoked to explain telomere elongation in tumors lacking telomerase (13). It is currently unknown whether LTGC and STGC in somatic mammalian cells are products of mechanistically distinct pathways or whether they represent alternative outcomes of a common SDSA pathway.Vertebrate cells contain five Rad51 paralogs—polypeptides with limited sequence homology to Rad51—Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3 (74). The Rad51 paralogs form the following two major complexes: Rad51B/Rad51C/Rad51D/XRCC2 (BCDX2) and Rad51C/XRCC3 (CX3) (38, 73). Genetic deletion of any one of the rad51 paralogs in the mouse germ line produces early embryonic lethality, and mouse or chicken cells lacking any of the rad51 paralogs reveal hypersensitivity to DNA-damaging agents, reduced frequencies of HR and of sister chromatid exchanges, increased chromatid-type errors, and defective sister chromatid cohesion (18, 72, 73, 82). Collectively, these data implicate the Rad51 paralogs in SCR regulation. The purified Rad51B/Rad51C complex has been shown to assist Rad51-mediated strand exchange (62). XRCC3 null or Rad51C null hamster cells reveal a bias toward production of longer gene conversion tracts, suggesting a role for the CX3 complex in late stages of SDSA (6, 44). Rad51C copurifies with branch migration and Holliday junction resolution activities in mammalian cell extracts (35), and XRCC3, but not XRCC2, facilitates telomere shortening by reciprocal crossing-over in telomeric T loops (77). These data, taken together with the meiotic defects observed in Rad51C hypomorphic mice, suggest a specialized role for CX3, but not for BCDX2, in resolving Holliday junction structures (31, 58).To further address the roles of Rad51 paralogs in late stages of recombination, we have studied the balance between long-tract (>1-kb) and short-tract (<1-kb) SCR in XRCC2 mutant hamster cells. We found that DSB-induced gene conversion in both XRCC2 and XRCC3 mutant cells is biased in favor of LTGC. These defects were suppressed by expression of wild-type (wt) XRCC2 or XRCC3, respectively, although the dependence upon ATP binding and hydrolysis differed between the two Rad51 paralogs. These results indicate that Rad51 paralogs play a more general role in determining the balance between STGC and LTGC than was previously appreciated and suggest roles for both the BCDX2 and CX3 complexes in influencing the termination of gene conversion in mammals.  相似文献   

10.
11.
12.
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.Key words: DNA repair, nervous system, neurodegeneration, DNA ligase III, DNA damage, XRCC1, mitochondria, mtDNA  相似文献   

13.
Molecular Biology Reports - Homologous recombination (HR) is one of the important mechanisms in repairing double-strand breaks to maintain genomic integrity and DNA stability from the cytotoxic...  相似文献   

14.
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.  相似文献   

15.
The human gene that encodes XRCC1 was cloned nearly thirty years ago but experimental analysis of this fascinating protein is still unveiling new insights into the DNA damage response. XRCC1 is a molecular scaffold protein that interacts with multiple enzymatic components of DNA single-strand break repair (SSBR) including DNA kinase, DNA phosphatase, DNA polymerase, DNA deadenylase, and DNA ligase activities that collectively are capable of accelerating the repair of a broad range of DNA single-strand breaks (SSBs). Arguably the most exciting aspect of XRCC1 function that has emerged in the last few years is its intimate relationship with PARP1 activity and critical role in preventing hereditary neurodegenerative disease. Here, I provide an update on our current understanding of XRCC1, and on the impact of hereditary mutations in this protein and its protein partners on human disease.  相似文献   

16.
XRCC1 and DNA strand break repair   总被引:16,自引:0,他引:16  
Caldecott KW 《DNA Repair》2003,2(9):955-969
DNA single-strand breaks can arise indirectly, as normal intermediates of DNA base excision repair, or directly from damage to deoxyribose. Because single-strand breaks are induced by endogenous reactive molecules such as reactive oxygen species, these lesions pose a continuous threat to genetic integrity. XRCC1 protein plays a major role in facilitating the repair of single-strand breaks in mammalian cells, via an ability to interact with multiple enzymatic components of repair reactions. Here, the protein-protein interactions facilitated by XRCC1, and the repair processes in which these interactions operate, are reviewed. Models for the repair of single-strand breaks during base excision repair and at direct breaks are presented.  相似文献   

17.
XRCC genes (X-ray cross-complementing group) were discovered mainly for their roles in protecting mammalian cells against damage caused by ionizing radiation. Studies determined that these genes are important in the genetic stability of DNA. Although the loss of some of these genes does not necessarily confer high levels of sensitivity to radiation, they have been found to represent important components of various pathways of DNA repair. To ensure the integrity of the genome, a complex system of DNA repair was developed. Base excision repair is the first defense mechanism of cells against DNA damage and a major event in preventing mutagenesis. Repair genes may play an important role in maintaining genomic stability through different pathways that are mediated by base excision. In the present study, we examined XRCC1Arg194Trp and XRCC1Arg399Gln polymorphism using PCR-RFLP in 80 astrocytoma and glioblastoma samples. Patients who had the allele Trp of the XRCC1Arg194Trp polymorphism had an increased risk of tumor development (OR = 8.80; confidence interval at 95% (95%CI) = 4.37-17.70; P < 0.001), as did the allele Gln of XRCC1Arg399Gln (OR = 1.01; 95%CI = 0.53-1.93; P = 0.971). Comparison of overall survival of patients did not show significant differences. We suggest that XRCC1Arg194Trp and XRCC1Arg399Gln polymorphisms are involved in susceptibility for developing astrocytomas and glioblastomas.  相似文献   

18.
The irs1 and irs1SF hamster cell lines are mutated for the XRCC2 and XRCC3 genes, respectively. Both show heightened sensitivity to ionizing radiation and particularly to the DNA cross-linking chemical mitomycin C (MMC). Frequencies of spontaneous chromosomal aberration have previously been reported to be higher in these two cell lines than in parental, wild-type cell lines. Microcell-mediated chromosome transfer was used to introduce complementing or non-complementing human chromosomes into each cell line. irs1 cells received human chromosome 7 (which contains the human XRCC2 gene) or, as a control, human chromosome 4. irs1SF cells received human chromosome 14 (which contains the XRCC3 gene) or human chromosome 7. For each set of hybrid cell lines, clones carrying the complementing human chromosome recovered MMC resistance to near-wild-type levels, while control clones carrying noncomplementing chromosomes remained sensitive to MMC. Fluorescence in situ hybridization with a human-specific probe revealed that the human chromosome in complemented clones remained intact in almost all cells even after extended passage. However, the human chromosome in noncomplemented clones frequently underwent chromosome rearrangements including breaks, deletions, and translocations. Chromosome aberrations accumulated slowly in the noncomplemented clones over subsequent passages, with some particular deletions and unbalanced translocations persistently transmitted throughout individual subclones. Our results indicate that the XRCC2 and XRCC3 genes, which are now considered members of the RAD51 gene family, play essential roles in maintaining chromosome stability during cell division. This may reflect roles in DNA repair, possibly via homologous recombination.  相似文献   

19.
Radiation and Environmental Biophysics - Different types of DNA damages caused by ionizing radiation may enhance the cancer risk in exposed individuals. Inherited variations in DNA repair genes...  相似文献   

20.
Homologous recombinational repair preserves chromosomal integrity by removing double-strand breaks, cross-links, and other DNA damage. In eukaryotic cells, the Rad51 paralogs (XRCC2/3, Rad51B/C/D) are involved in this process, although their exact functions are largely undetermined. All five paralogs contain ATPase motifs, and XRCC3 exists in a single complex with Rad51C. To examine the function of this Rad51C-XRCC3 complex, we generated mammalian expression vectors that produce human wild-type XRCC3 or mutant XRCC3 with either a nonconservative mutation (K113A) or a conservative mutation (K113R) in the GKT Walker A box of the ATPase motif. The three vectors were independently transfected into Xrcc3-deficient irs1SF Chinese hamster ovary cells. Wild-type XRCC3 complemented irs1SF cells, albeit to varying degrees, whereas ATPase mutants had no complementing activity, even when the mutant protein was expressed at comparable levels to that in wild-type-complemented clones. Because of dysfunction of the mutants, we propose that ATP binding and hydrolyzing activities of XRCC3 are essential. We tested in vitro complex formation by wild-type and mutant XRCC3 with His6-tagged Rad51C upon co-expression in bacteria, nickel-affinity purification, and Western blotting. Wild-type and K113A mutant XRCC3 formed stable complexes with Rad51C and co-purified with Rad51C, whereas the K113R mutant did not and was predominantly insoluble. The addition of 5 mm ATP but not ADP also abolished complex formation by the wild-type proteins. These results suggest that XRCC3 probably regulates the dissociation and formation of Rad51C-XRCC3 complex through ATP binding and hydrolysis with both processes being essential for the ability of the complex to participate in homologous recombinational repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号