首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrin β4subunit is present in association with α6chain on both normal and transformed epithelial cells. Recently α6β4heterodimer was found on the endothelium of medium-sized blood vessels and on immature thymocytes. In this report we show, by Northern blotting, indirect immunofluorescence, immunoprecipitation, and Western blotting, that β4subunit is expressed also on cells of mesenchymal origin such as fibroblasts, myoblasts, and myotubes. Increased expression of α6β4has been related to the aggressive metastatic phenotype of human and murine carcinomas. The transforming growth factor β1(TGF-β1) has been found to modulate the expression of several integrins and intracellular matrix proteins, as well as to stimulate cell invasion and metastatic potential. To evaluate whether α6β4expression is modulated by TGF-β1, we transfected 3T3 fibroblasts with an expression vector carrying the human TGF-β1cDNA driven by the SV40 early promoter. We observed by indirect immunofluorescence a modification in the subcellular distribution of β4subunit, which acquires a perinuclear localization. This finding suggests this integrin subunit correlates with the cytoskeletal reorganization induced by TGF-β1.  相似文献   

2.
Although the existence of an increasing number of angiogenesis-regulating cytokines is well documented, the response elicited by combinations of these cytokines is largely unknown. Using an in vitro model in which microvascular endothelial cells can be induced to form capillary-like tubes within three-dimensional collagen or fibrin gels, we have investigated the effect of transforming growth factor-β1 (TGF-β1) on basic fibroblast growth factor (bFGF)-induced and vascular endothelial growth factor (VEGF)-induced angiogenesis. Endothelial cell invasion and capillary lumen formation were inhibited by TGF-β1 at relatively high concentrations (5-10 ng/ml), while lower concentrations (100 pg/ml-1 ng/ml) of TGF-β1 potentiated the effect of bFGF- and VEGF-induced invasion. The optimal potentiating effect was observed at 200-500 pg/ml TGF-β1. At invasion-potentiating doses of TGF-beta;1, lumen size in fibrin gels was markedly reduced compared to that in cultures treated with bFGF alone. These results show that TGF-β1 exerts a biphasic effect on bFGF- and VEGF-induced angiogenesis in vitro. Our studies support the notion that the nature of the angiogenic response elicited by a specific cytokine is contextual, i.e., depends on the presence and concentration of other cytokines in the pericellular environment of the responding endothelial cell.  相似文献   

3.
We assessed the presence and the role of membrane TGF-α in two rat liver epithelial cell lines, either parental or transfected with c-fos proto-oncogene. c-fos overexpressing cells had more TGF-α-like activity in their membranes. When TGF-α was removed by elastase or neutralized, the growth rates of both cell lines were markedly reduced, but to a higher extent for parental cells. If membrane TGF-α seemed to play a key contribution in normal cell growth, both cell lines were unable to react to the addition of soluble TGF-α, showing that these two forms of growth factors are not equivalent.  相似文献   

4.
5.
6.
We reported previously (S. L. Rogers, P. J. Gegick, S. M. Alexander, and P. G. McGuire, Dev. Biol. 151, 191-203, 1992) that transforming growth factor-β1 (TGFβ1) inhibited proliferation, up-regulated fibronectin synthesis, and suppressed melanogenesis in a population of quail neural crest cells in vitro. Here, we report that cell lines derived from the parent SK-N-SH neuroblastoma line (R. A. Ross, B. A. Spengler, and J. L. Biedler, J. Natl. Cancer Inst. 71, 741-747, 1983) respond differentially to TGFβ1, and their responses provide further insights into the actions of this growth factor on neural crest subpopulations. The SH-EP cell line exhibits primarily nonneuronal traits and responded to TGFβ1 with increased thymidine uptake after 6 days of culture, increased expression of fibronectin mRNA and protein, and decreased laminin synthesis. Many SH-EP cells also acquired a dramatically elongated morphology, reminiscent of Schwann cells in culture. Thymidine uptake by the neuronal SY5Y cell line was not substantially altered. Neither fibronectin mRNA nor protein was detectable in either TGFβ1-treated or untreated cultures, although laminin synthesis was upregulated by the growth factor. In TGFβ1-treated cultures of the intermediate SH-IN cell line, which has been reported to display both neuronal and nonneuronal characteristics, there was marked flattening of many cells, a steady decrease in thymidine uptake, and increased expression of both fibronectin and laminin. The observed responses of SH-IN cells mimic those observed in primary neural crest cultures and appear to represent similar differentiation toward a mesenchymal phenotype. These results substantiate the idea that closely related but diverging neural crest-derived cell types respond selectively to TGFβ1 and demonstrate that these SK-N-SH-derived cell lines will be useful in experimental approaches that will allow us to infer mechanisms underlying regulation of neural crest differentiation.  相似文献   

7.
We have investigated the localization pattern of the transforming growth factor-β (TGF-β) receptors type I (TβR-I) and type II (TβR-II) during mouse organogenesis by immunohistochemical analysis. Staining of both receptors was found in many developing organs, e.g., bone, teeth, Meckel's cartilage, and neural tissues, where the expression of their ligands has been previously reported. During the investigated stages, expression of TβR-I was more ubiquitous than that of TβR-II. TβR-II preferentially localized in the undifferentiated mesenchymal cells which subsequently differentiated into bone. There was no staining of TβR-II in the central nervous system, while intense TβR-I staining was found specifically in nervous tissues. Expression of TβR-I and TβR-II was mostly coincident with that of their ligands, suggesting that TGF-βs act as multiple mediators during organogenesis. In addition, colocalization of both receptors in the epithelia of the tooth bud and submandibular gland, which were actively invaginating into the mesenchyme, leads us to speculate that both receptors may be necessary for dynamic epithelial morphogenesis.  相似文献   

8.
Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.  相似文献   

9.
Osteopontin (OPN), a 41-kDa phosphorylated glycoprotein, has been detected in rat aorta and carotid arteries, and expression of its mRNA in blood vessels is strongly increased in response to vascular injury. To investigate the potential role of OPN in vascular pathophysiology, we studied the effect of rat OPN on aortic smooth muscle cell migration and proliferation in vitro. OPN enhanced the migration of rat smooth muscle cells in a time- and concentration-dependent manner with an EC50 value of 46 ± 11 nmol/liter (n = 5). The maximal increase in cell migration by OPN was 29-fold over basal levels. OPN-induced smooth muscle cell migration was inhibited in a concentration-dependent manner by the monoclonal antibody F11, which recognizes the rat integrin subunit β3. In contrast, polyclonal antiserum recognizing the rat integrin β1 subunit did not inhibit smooth muscle cell migration in response to OPN, but did block fibronectin-promoted migration. Moreover, OPN-induced smooth muscle cell migration was dependent on the presence of extracellular divalent cations and was significantly inhibited by anti-OPN antibodies. OPN did not stimulate [3H]thymidine incorporation into cultured smooth muscle cells, indicating that it selectively enhanced migration. In view of the pathological significance of arterial smooth muscle cell migration in the formation of intimal thickening, our results suggest that smooth muscle cell recognition of OPN, probably through the vitronectin receptor, αvβ3, could play a role in the cells' response to vascular injury and especially neointima formation.  相似文献   

10.
Plasminogen activators are implicated in the pathogenesis of several diseases such as inflammatory diseases and cancer. Beside their serine-protease activity, these agents trigger signaling pathways involved in cell migration, adhesion and proliferation. We previously reported a role for the sphingolipid pathway in the mitogenic effect of plasminogen activators, but the signaling mechanisms involved in neutral sphingomyelinase-2 (NSMase-2) activation (the first step of the sphingolipid pathway) are poorly known. This study was carried out to investigate how urokinase plasminogen activator (uPA) activates NSMase-2. We report that uPA, as well as its catalytically inactive N-amino fragment ATF, triggers the sequential activation of MMP-2, NSMase-2 and ERK1/2 in ECV304 cells that are required for uPA-induced ECV304 proliferation, as assessed by the inhibitory effect of Marimastat (a MMP inhibitor), MMP-2-specific siRNA, MMP-2 defect, and NSMase-specific siRNA. Moreover, upon uPA stimulation, uPAR, MT1-MMP, MMP-2 and NSMase-2 interacted with integrin αvβ3, evidenced by co-immunoprecipitation and immunocytochemistry experiments. Moreover, the αvβ3 blocking antibody inhibited the uPA-triggered MMPs/uPAR/integrin αvβ3 interaction, NSMase-2 activation, Ki67 expression and DNA synthesis in ECV304. In conclusion, uPA triggers interaction between integrin αvβ3, uPAR and MMPs that leads to NSMase-2 and ERK1/2 activation and cell proliferation. These findings highlight a new signaling mechanism for uPA, and suggest that, upon uPA stimulation, uPAR, MMPs, integrin αvβ3 and NSMase-2 form a signaling complex that take part in mitogenic signaling in ECV304 cells.  相似文献   

11.
12.
Transforming growth factor-β (TGF-β) is secreted by many cell types as part of a large latent complex composed of three subunits: TGF-β, the TGF-β propeptide, and the latent TGF-β binding protein (LTBP). To interact with its cell surface receptors, TGF-β must be released from the latent complex by disrupting noncovalent interactions between mature TGF-β and its propeptide. Previously, we identified LTBP-1 and transglutaminase, a cross-linking enzyme, as reactants involved in the formation of TGF-β. In this study, we demonstrate that LTBP-1 and large latent complex are substrates for transglutaminase. Furthermore, we show that the covalent association between LTBP-1 and the extracellular matrix is transglutaminase dependent, as little LTBP-1 is recovered from matrix digests prepared from cultures treated with transglutaminase inhibitors. Three polyclonal antisera to glutathione S–transferase fusion proteins containing amino, middle, or carboxyl regions of LTBP-1S were used to identify domains of LTBP-1 involved in crosslinking and formation of TGF-β by transglutaminase. Antibodies to the amino and carboxyl regions of LTBP-1S abrogate TGF-β generation by vascular cell cocultures or macrophages. However, only antibodies to the amino-terminal region of LTBP-1 block transglutaminase-dependent cross-linking of large latent complex or LTBP-1. To further identify transglutaminase-reactive domains within the amino-terminal region of LTBP-1S, mutants of LTBP-1S with deletions of either the amino-terminal 293 (ΔN293) or 441 (ΔN441) amino acids were expressed transiently in CHO cells. Analysis of the LTBP-1S content in matrices of transfected CHO cultures revealed that ΔN293 LTBP-1S was matrix associated via a transglutaminasedependent reaction, whereas ΔN441 LTBP-1S was not. This suggests that residues 294–441 are critical to the transglutaminase reactivity of LTBP-1S.  相似文献   

13.
The types I, II, and III receptors (RI, RII, RIII) for transforming growth factor-β (TGF-β) become down-regulated in response to ligand, presumably via their internalization from the cell surface. This report examines the down-regulation of full-length RI, RII, and RIII in cells endogenously or transiently expressing these receptors. Down-regulation occurred rapidly (within 2 h after TGF-β1 treatment at 37°C) and showed a dose response, between 10 and 200 pM TGF-β1, in cells expressing RI, RII, and RIII (Mv1lu and A549 cells). A comparison between Mv1Lu and mutant cell derivatives R-1B (lacking RI) or DR-26 (lacking RII) indicated that all three receptors were necessary for efficient down-regulation. Down-regulation experiments, utilizing TGF-β-treated 293 cells transiently expressing different combinations of these receptors indicated that neither RII or RIII were down-regulated when expressed alone and that RI was required for maximal down-regulation of RII. RII and RIII were partially down-regulated when these receptors were coexpressed in the absence of RI (in R-1B and 293 cells). Surprisingly, TGF-β receptors were partially down-regulated in Mv1Lu, A549, and 293 cells treated with TGF-β1 at 4°C. Microscopic examination of 293 cells coexpressing RI fused to green fluorescent protein (RI–GFP) and RII indicated that, after treatment with TGF-β1 at 4°C, RI–GFP formed aggregates at the cell surface at this temperature. RI–GFP was not detected at the surface of these cells after TGF-β1 treatment at 37°C. Our results suggest a two phase mechanism for TGF-β1 receptor down-regulation involving receptor modulation (aggregation) at the cell surface and internalization.  相似文献   

14.
The full length sequence of the Xenopus integrin α5 subunit is reported. Analysis of cloned cDNA fragments reveals that alternative polyadenylation of α5 mRNA occurs in the embryo. Furthermore, a variant form of the α5 mRNA is expressed which encodes an integrin α5 subunit with a truncated cytoplasmic domain. Integrin α5 mRNA and protein are expressed in oocytes, eggs and throughout development. Spatial expression of α5 mRNAs is first detected by whole mount in situ hybridization in presumptive neural crest cells and in the somitic mesoderm from the midgastrula stage onwards. In contrast, the α5 protein is present on newly formed plasma membranes beginning at first cleavage. During neurulation, the integrin α5 subunit disappears from the outer layer of the ectoderm, the notochord and the neural tube and accumulates in the sensorial layer of the ectoderm, the somites and the neural crest cells. These results provide evidence for the position specific regulation of α subunit expression in early vertebrate embryos.  相似文献   

15.
αVβ3, a broadly distributed member of the integrin family of adhesion receptors, has been implicated in a variety of physiological and pathophysiological events, including control of bone density, angiogenesis, apoptosis, tumor growth, and metastasis. Recently, it has been shown that activation of αVβ3, its transition from a low- to a high-affinity/avidity state, influences its recognition of certain ligands. Bone sialoprotein (BSP) is recognized as an important ligand for αVβ3 in processes ranging from bone formation to the homing of metastatic tumor cells. Here, the influence of αVβ3 activation on the adhesion and migration of relevant cells to BSP has been examined. Stimulation of lymphoblastoid, osteoblastoid, and human umbilical vein endothelial cells (HUVEC) with PMA or Mn2+ markedly enhanced αVβ3-dependent adhesion to BSP. αVβ3-mediated migration of HUVEC or osteoblastic cells to BSP was substantially enhanced by stimulation, demonstrating that αVβ3 activation enhances both adhesive and migratory responses. However, adhesion and/or migration of certain tumor cell lines, including M21 melanoma and MDA MB435 and SKBR3 breast carcinoma cell lines, to BSP was constitutively high and was not augmented by αVβ3-activating stimuli. Inhibitors of the intracellular signaling molecules, phosphatidylinositol 3-kinase with wortmannin, hsp90-dependent kinases with geldanamycin, and calpain with calpeptin, but not MAPKK with PD98059, reduced the high spontaneous adhesion and migration of the M21 cells to BSP, consistent with the constitutive activation of the receptor on these tumor cells. These results indicate that the activation state of αVβ3 can regulate cell migration and adhesion to BSP and, by extension, to other ligands of this receptor. The constitutive activation of αVβ3 on neoplastic cells may contribute to tumor growth and metastatic potential.  相似文献   

16.
17.
The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.  相似文献   

18.
Beginning with the observation that hepatocyte growth factor (HGF) induces the formation of branching tubular structures in Madin-Darby canine kidney (MDCK) cells cultured in Type I collagen gels but not in basement membrane Matrigel, we examined the individual components within this complex basement membrane extract to determine the effect of these proteins on the morphogenetic changes mediated by HGF. After extraction of several growth factors from Matrigel, HGF was still unable to induce process formation, an early event in tubulogenesis, indicating that one or more of the remaining extracellular matrix (ECM) proteins or growth factors were exerting the inhibitory effect. By individually adding back these components to MDCK cells grown in Type I collagen gels in the presence of HGF, we were able to establish that: (1) certain ECM proteins, such as laminin, entactin, and fibronectln, actually facilitated the formation of branching tubular structures and increased their complexity; (2) other ECM proteins, such as Type IV collagen, heparan sulfate proteoglycan, and vitronectin, caused marked inhibition of HGF-induced morphogenesis; and (3) not only did transforming growth factor-β (TGF-β) inhibit the formation of tubular structures, but those which did form exhibited little branching, thereby suggesting that TGF-β modulates tubulogenesis as well as branching. These results suggest that a tubulogenic morphogen such as HGF and a tubulogenesis-inhibitory morphogen such as TGF-β can, in the context of the dynamic matrix known to exist during epithelial tissue development, modulate the degree of tubule (or ductal) formation, the length of these tubules, and the extent of their arborization. The relevance of these findings to tubulogenesis and branching during kidney development is discussed.  相似文献   

19.
By introducing an α3 gene-containing plasmid into a human T cell line Jurkat, we prepared the T cells, which express a high level of the α3β1 integrin, to assess the role of laminin 5 in the skin immune system. The α3β1-expressing T cells adhered to laminin 5 and exhibited spreading. These adhered T cells showed a significant tyrosine phosphorylation of intracellular proteins including p59fynupon T-cell receptor (TCR) stimulation. Six hours after cross-linking TCR, these cells on laminin 5 secreted a three times higher level of IL-2 than those on a BSA-coated plate. Twenty hours after the stimulation, 48% of the α3β1-expressing T cells on laminin 5 caused apoptosis. The protein level of cyclin D3 and E decreased, while that of p53 increased in these T cells. These data suggest that laminin 5 may play at least two regulatory roles for T cell functions: augmentation of IL-2 production by antigen-stimulated T cells and induction of apoptosis in these T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号