首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Store-operated cation (SOC) channels and capacitative Ca(2+) entry (CCE) play very important role in cellular function, but the mechanism of their activation remains one of the most intriguing and long lasting mysteries in the field of Ca(2+) signaling. Here, we present the first evidence that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is a crucial molecular determinant in activation of SOC channels and store-operated Ca(2+) entry pathway. Using molecular, imaging, and electrophysiological techniques, we show that directed molecular or pharmacological impairment of the functional activity of iPLA(2) leads to irreversible inhibition of CCE mediated by nonselective SOC channels and by Ca(2+)-release-activated Ca(2+) (CRAC) channels. Transfection of vascular smooth muscle cells (SMC) with antisense, but not sense, oligonucleotides for iPLA(2) impaired thapsigargin (TG)-induced activation of iPLA(2) and TG-induced Ca(2+) and Mn(2+) influx. Identical inhibition of TG-induced Ca(2+) and Mn(2+) influx (but not Ca(2+) release) was observed in SMC, human platelets, and Jurkat T-lymphocytes when functional activity of iPLA(2) was inhibited by its mechanism-based suicidal substrate, bromoenol lactone (BEL). Moreover, irreversible inhibition of iPLA(2) impaired TG-induced activation of single nonselective SOC channels in SMC and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-induced activation of whole-cell CRAC current in rat basophilic leukemia cells. Thus, functional iPLA(2) is required for activation of store-operated channels and capacitative Ca(2+) influx in wide variety of cell types.  相似文献   

2.
Shin Y  Daly JW  Choi OH 《Cell calcium》2000,27(5):269-280
Sphingosine induces a biphasic increase in cytosolic-free Ca(2+)([Ca(2+)](i)) with an initial peak followed by a sustained increase in HL-60 cells differentiated into neutrophil-like cells. The initial peak is not affected by the presence of ethylene glycol bis (beta-aminoethyl ether) N, N, N', N-tetraacetic acid (EGTA) in the buffer and appears to be dependent on conversion of sphingosine to sphingosine -1-phosphate (S1P) by sphingosine kinase, since it is blocked by the presence of N, N-dimethylsphingosine (DMS), which, like sphingosine, causes a sustained increase itself. The sustained increase that is elicited by sphingosine or DMS is abolished by the presence of EGTA in the buffer. The sustained sphingosine-induced Ca(2+)influx does not appear due to Ca(2+)influx through store-operated Ca(2+)(SOC) channels, since the influx is not inhibited by SKF 96365, nor is it augmented by loperamide. In addition, sphingosine and DMS attenuate the Ca(2+)influx through SOC channels that occurs after depletion of intracellular stores by ATP or thapsigargin. Both the initial peak and the sustained increase in [Ca(2+)](i)elicited by sphingosine can be blocked by phorbol 12-myristate 13-acetate (PMA)-elicited activation of protein kinase C. Thus, in HL-60 cells sphingosine causes a mobilization of Ca(2+)from intracellular Ca(2+)stores, which requires conversion to S1P, while both sphingosine and DMS elicit a Ca(2+)influx through an undefined Ca(2+)channel and cause a blockade of SOC channels.  相似文献   

3.
Human mesenchymal stem cells (HMSC) have the potential to differentiate into many cell types. The physiological properties of HMSCs including their Ca(2+) signaling pathways, however, are not well understood. We investigated Ca(2+) influx and release functions in HMSCs. In Ca(2+) imaging experiments, spontaneous Ca(2+) oscillations were observed in 36 of 50 HMSCs. The Ca(2+) oscillations were completely blocked by the application of 10 micro M cyclopiazonic acid (CPA) or 1 micro M thapsigargin (TG). A brief application of 1 micro M acetylcholine (ACh) induced a transient increase of [Ca(2+)](i) but the application of caffeine (10 mM) did not induce any Ca(2+) transient. When the stores were depleted with Ca(2+)-ATPase blockers (CPA or TG) or muscarinic agonists (ACh), store-operated Ca(2+) (SOC) entry was observed. Using the patch-clamp technique, store-operated Ca(2+) currents (I(SOC)) could be recorded in cells treated with ACh or CPA, but voltage-operated Ca(2+) currents (VOCCs) were not elicited in most of the cells (17/20), but in 15% of cells examined, small dihydropyridine (DHP)-sensitive Ca(2+) currents were recorded. Using RT-PCR, mRNAs were detected for inositol 1,4,5-trisphosphate receptor (InsP(3)R) type I, II, and III and DHP receptors alpha1A and alpha1H were detected, but mRNA was not detected for ryanodine receptor (RyR) or N-type Ca(2+) channels. These results suggest that in undifferentiated HMSCs, Ca(2+) release is mediated by InsP(3)Rs and Ca(2+) entry through plasma membrane is mainly mediated by the SOCs channels with a little contribution of VOCCs.  相似文献   

4.
The influence of gamma radiation on basal compared to activation-dependent Ca(2+) influx in human lymphocytes was investigated. A new quantitative fluorescence technique termed differential ratiometric fluorescence spectroscopy (DRFS) was employed. DRFS facilitated the real-time detection of changes in fluorescence in experimental and control cell samples simultaneously, enabling the resolution of acute moderate changes ( congruent with10-30%) in Ca(2+) (manganese) influx after exposure to ionizing radiation and other oxidant interventions. Exposure to radiation inhibited thapsigargin-stimulated store-operated Ca(2+) influx but not basal Ca(2+) influx in Jurkat T cells and human peripheral blood lymphocytes. The response of store-operated Ca(2+) influx to gamma radiation was dependent on dose between 5 and 40 Gy and was inhibited by preincubation with the Ca(2+) channel blocker Ni(2+), as determined with Jurkat T cells. Elevation of the intracellular concentration of glutathione significantly reduced the inhibition of Ca(2+) influx by gamma radiation. Similar to radiation, both the superoxide anion-generating xanthine/xanthine oxidase system and hydrogen peroxide inhibited thapsigargin-stimulated Ca(2+) influx in Jurkat T cells, and this inhibition was reversed in the presence of the antioxidant N-acetyl-l-cysteine. In conclusion, (1) ionizing radiation inhibited store-operated Ca(2+) entry in human lymphocytes, (2) the sensitivity of Ca(2+) influx to radiation was strictly dependent on depletion of Ca(2+) stores, and (3) glutathione protected against the inhibition of store-operated Ca(2+) entry by gamma radiation.  相似文献   

5.
The coupling between receptor-mediated Ca2+ store release and the activation of "store-operated" Ca2+ entry channels is an important but so far poorly understood mechanism. The transient receptor potential (TRP) superfamily of channels contains several members that may serve the function of store-operated channels (SOCs). The 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2, is a recently described inhibitor of SOC activity in T-lymphocytes. We compared its action on SOC activation in a number of cell types and evaluated its modification of three specific TRP channels, canonical transient receptor potential 3 (TRPC3), TRPC5, and TRPV6, to throw light on any link between SOC and TRP channel function. Using HEK293 cells, DT40 B cells, and A7r5 smooth muscle cells, BTP2 blocked store-operated Ca2+ entry within 10 min with an IC50 of 0.1-0.3 microM. Store-operated Ca2+ entry induced by Ca2+ pump blockade or in response to muscarinic or B cell receptor activation was similarly sensitive to BTP2. Using the T3-65 clonal HEK293 cell line stably expressing TRPC3 channels, TRPC3-mediated Sr2+ entry activated by muscarinic receptors was also blocked by BTP2 with an IC50 of <0.3 microM. Importantly, direct activation of TRPC3 channels by diacylglycerol was also blocked by BTP2 (IC50 approximately 0.3 microM). BTP2 still blocked TRPC3 in medium with N-methyl-D-glucamine-chloride replacing Na+, indicating BTP2 did not block divalent cation entry by depolarization induced by activating monovalent cation entry channels. Whereas whole-cell carbachol-induced TRPC3 current was blocked by 3 microM BTP2, single TRPC3 channel recordings revealed persistent short openings suggesting BTP2 reduces the open probability of the channel rather than its pore properties. TRPC5 channels transiently expressed in HEK293 cells were blocked by BTP2 in the same range as TRPC3. However, function of the highly Ca(2+)-selective TRPV6 channel, with many channel properties akin to SOCs, was entirely unaffected by BTP2. The results indicate a strong functional link between the operation of expressed TRPC channels and endogenous SOC activity.  相似文献   

6.
Capacitative calcium entry in guinea pig gallbladder smooth muscle in vitro   总被引:4,自引:0,他引:4  
Quinn T  Molloy M  Smyth A  Baird AW 《Life sciences》2004,74(13):1659-1669
This study investigates the involvement of capacitative Ca2+ entry in excitation-contraction coupling in guinea pig gallbladder smooth muscle. Thapsigargin (0.1 nM-1 microM, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor) produced slowly developing sustained tonic contractions in guinea pig isolated gallbladder strips. All contractions approached 50% of the response to carbachol (10 microM) after 55 min. Contractile responses to thapsigargin (1 microM) were abolished in a Ca(2+)-free medium. Subsequent re-addition of Ca2+ (2.5 mM) produced a sustained tonic contraction (99 +/- 6% of the carbachol response). The contractile response to Ca2+ re-addition following incubation of tissues in a Ca(2+)-free bathing solution in the absence of thapsigargin was significantly less than in its presence (79 +/- 4 % vs 100 +/- 7 % of carbachol; p < 0.05). Contractile responses to Ca2+ re-addition following treatment with thapsigargin were attenuated by (a) the L-type voltage-operated Ca2+ channel antagonist, nifedipine (10 microM) and (b) the general inhibitor of Ca2+ entry channels including store-operated channels, SK&F96365 (50 microM and 100 microM). In separate experiments, responses to Ca2+ re-addition were essentially abolished by the tyrosine kinase inhibitor, genistein (100 microM). These results suggest that capacitative Ca2+ entry provides a source of activator Ca2+ for guinea pig gallbladder smooth muscle contraction. Contractile responses to Ca2+ re-addition following depletion of sarcoplasmic reticulum Ca2+ stores with thapsigargin, are mediated in part by Ca2+ entry through voltage-operated Ca2+ channels and by capacitative Ca2+ entry through store-operated Ca2+ channels which can be blocked by SK&F96365. Furthermore, capacitative Ca2+ entry in this tissue may be modulated by tyrosine kinase.  相似文献   

7.
The action of 2-aminoethoxydiphenyl borate (2-APB) on Ca(2+) signalling in HeLa cells and cardiac myocytes was investigated. Consistent with other studies, we found that superfusion of cells with 2-APB rapidly inhibited inositol 1,4,5-trisphosphate (InsP(3))-mediated Ca(2+) release and store-operated Ca(2+) entry (SOC). In addition to abrogating hormone-evoked Ca(2+) responses, 2-APB could antagonise Ca(2+) signals evoked by a membrane permeant InsP(3) ester. 2-APB also slowed the recovery of intracellular Ca(2+) signals consistent with an effect on Ca(2+) ATPases. The inhibitory action of 2-APB on InsP(3) receptors (InsP(3)Rs), SOC channels and Ca(2+) pumps persisted for several minutes after washout of the compound. Application of 2-APB to unstimulated cells had no effect on subsequent Ca(2+) responses suggesting that it has a use-dependent action. Mitochondria in cells treated with 2-APB showed a rapid and slowly reversible swelling. 2-APB did not cause the mitochondria to depolarise, but it reduced the extent of mitochondrial calcium uptake. Although 2-APB has been demonstrated not to affect voltage-operated Ca(2+) channels or ryanodine receptors, we found that it gave a concentration-dependent long-lasting inhibition of Ca(2+) signalling in electrically-stimulated cardiac myocytes, where InsP(3)Rs and SOC channels do not play a significant role. Our data suggest that 2-APB has multiple cellular targets, a use-dependent action, is difficult to reverse and may affect Ca(2+) signalling in cell types where InsP(3) and SOC are not active.  相似文献   

8.
STIM1 is an endoplasmic reticulum (ER) membrane Ca(2+) sensor responsible for activation of store-operated Ca(2+) influx. We discovered that STIM1 oligomerization and store-operated Ca(2+) entry (SOC) are modulated by the ER oxidoreductase ERp57. ERp57 interacts with the ER luminal domain of STIM1, with this interaction involving two conserved cysteine residues, C(49) and C(56). SOC is accelerated in the absence of ERp57 and inhibited in C(49) and C(56) mutants of STIM1. We show that ERp57, by ER luminal interaction with STIM1, has a modulatory role in capacitative Ca(2+) entry. This is the first demonstration of a protein involved in ER intraluminal regulation of STIM1.  相似文献   

9.
Agonist-receptor interactions at the plasma membrane often lead to activation of store-operated channels (SOCs) in the plasma membrane, allowing for sustained Ca(2+) influx. While Ca(2+) influx is important for many biological processes, little is known about the types of SOCs, the nature of the depletion signal, or how the SOCs are activated. We recently showed that in addition to the Ca(2+) release-activated Ca(2+) (CRAC) channel, both Jurkat T cells and human peripheral blood mononuclear cells express novel store-operated nonselective cation channels that we termed Ca(2+) release-activated nonselective cation (CRANC) channels. Here we demonstrate that activation of both CRAC and CRANC channels is accelerated by a soluble Ca(2+) influx factor (CIF). In addition, CRANC channels in inside-out plasma membrane patches are directly activated upon exposure of their cytoplasmic side to highly purified CIF preparations. Furthermore, CRANC channels are also directly activated by diacylglycerol. These results strongly suggest that the Ca(2+) store-depletion signal is a diffusible molecule and that at least some SOCs may have dual activation mechanisms.  相似文献   

10.
Gilabert JA  Parekh AB 《The EMBO journal》2000,19(23):6401-6407
In eukaryotic cells, hormones and neurotransmitters that engage the phosphoinositide pathway evoke a biphasic increase in intracellular free Ca(2+) concentration: an initial transient release of Ca(2+) from intracellular stores is followed by a sustained phase of Ca(2+) influx. This influx is generally store dependent. Most attention has focused on the link between the endoplasmic reticulum and store-operated Ca(2+) channels in the plasma membrane. Here, we describe that respiring mitochondria are also essential for the activation of macroscopic store-operated Ca(2+) currents under physiological conditions of weak intracellular Ca(2+) buffering. We further show that Ca(2+)-dependent slow inactivation of Ca(2+) influx, a widespread but poorly understood phenomenon, is regulated by mitochondrial buffering of cytosolic Ca(2+). Thus, by enabling macroscopic store-operated Ca(2+) current to activate, and then by controlling its extent and duration, mitochondria play a crucial role in all stages of store-operated Ca(2+) influx. Store-operated Ca(2+) entry reflects a dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane.  相似文献   

11.
Store-operated Ca(2+) channels, which are activated by the emptying of intracellular Ca(2+) stores, provide one major route for Ca(2+) influx. Under physiological conditions of weak intracellular Ca(2+) buffering, the ubiquitous Ca(2+) releasing messenger InsP(3) usually fails to activate any store-operated Ca(2+) entry unless mitochondria are maintained in an energized state. Mitochondria rapidly take up Ca(2+) that has been released by InsP(3), enabling stores to empty sufficiently for store-operated channels to activate. Here, we report a novel role for mitochondria in regulating store-operated channels under physiological conditions. Mitochondrial depolarization suppresses store-operated Ca(2+) influx independently of how stores are depleted. This role for mitochondria is unrelated to their actions on promoting InsP(3)-sensitive store depletion, can be distinguished from Ca(2+)-dependent inactivation of the store-operated channels and does not involve changes in intracellular ATP, oxidants, cytosolic acidification, nitric oxide or the permeability transition pore, but is suppressed when mitochondrial Ca(2+) uptake is impaired. Our results suggest that mitochondria may have a more fundamental role in regulating store-operated influx and raise the possibility of bidirectional Ca(2+)-dependent crosstalk between mitochondria and store-operated Ca(2+) channels.  相似文献   

12.
The purpose of this study was to demonstrate the involvement of Ca(2+) influx through voltage-independent Ca(2+) channels (VICCs) in endothelin-1 (ET-1)-induced transactivation of epidermal growth factor receptor protein tyrosine kinase (EGFR PTK) using the Ca(2+) channel blockers LOE-908 and SK&F-96365 in rabbit internal carotid artery vascular smooth muscle cells. ET-1-induced EGFR PTK transactivation was completely inhibited by AG-1478, which is a specific inhibitor of EGFR PTK. In the absence of extracellular Ca(2+), the magnitude of EGFR PTK transactivation was near the basal level. Based on sensitivity to nifedipine, which is a specific blocker of voltage-operated Ca(2+) channels (VOCCs), VOCCs have minor roles in EGFR PTK transactivation. In contrast, Ca(2+) influx through VICCs plays an important role in EGFR PTK transactivation. Moreover, based on the sensitivity of VICCs to SK&F-96365 and LOE-908, VICCs were shown to consist of two types of Ca(2+)-permeable nonselective cation channels (NSCCs), which are designated NSCC-1 and NSCC-2, and a store-operated Ca(2+) channel. In summary, Ca(2+) influx through VICCs plays an essential role in ET-1-induced EGFR PTK transactivation in rabbit internal carotid artery vascular smooth muscle cells.  相似文献   

13.
Exposure of neurones in culture to excitotoxic levels of glutamate results in an initial transient spike in [Ca2+]i followed by a delayed, irreversible [Ca2+]i rise governed by rapid kinetics, with Ca2+ originating from the extracellular medium. The molecular mechanism responsible for the secondary Ca2+ rise is unknown. Here, we report that the delayed Ca2+ entry in cortical neurones is diminished by 2-aminoethoxydiphenyl borate (2-APB: IC50 = 62 +/- 9 microm) and La3+ (IC50 = 7.2 +/- 3 microm), both known to inhibit transient receptor potential (TRP) and store-operated Ca2+ (SOC) channels. Application of thapsigargin, however, failed to exacerbate the delayed Ca2+ deregulation, arguing against a store depletion event as the stimulus for induction of the secondary [Ca2+]i rise. In addition, these neurones did not exhibit SOC entry. Unexpectedly, application of ryanodine or caffeine significantly inhibited glutamate-induced delayed Ca2+ deregulation. In basal Ca2+ entry experiments, La3+ and 2-APB modulated the rapid rise in [Ca2+]i caused by exposure of neurones to Ca2+ after pre-incubating in a calcium-free medium. This basal Ca2+ influx was mitigated by extracellular Mg2+ but not aggravated by thapsigargin, ryanodine or caffeine. These results indicate that 2-APB and La3+ influence non-store-operated Ca2+ influx in cortical neurones and that this route of Ca2+ entry is involved in glutamate-induced delayed Ca2+ deregulation.  相似文献   

14.
Store-operated channels (SOC) and store-operated Ca2+ entry are known to play a major role in agonist-induced constriction of smooth muscle cells (SMC) in conduit vessels. In microvessels the role of SOC remains uncertain, in as much as voltage-gated L-type Ca2+ (Ca2+L) channels are thought to be fully responsible for agonist-induced Ca2+ influx and vasoconstriction. We present evidence that SOC and their activation via a Ca2+-independent phospholipase A2 (iPLA2)-mediated pathway play a crucial role in agonist-induced constriction of cerebral, mesenteric, and carotid arteries. Intracellular Ca2+ in SMC and intraluminal diameter were measured simultaneously in intact pressurized vessels in vitro. We demonstrated that 1) Ca2+ and contractile responses to phenylephrine (PE) in cerebral and carotid arteries were equally abolished by nimodipine (a Ca2+L) inhibitor) and 2-aminoethyl diphenylborinate (an inhibitor of SOC), suggesting that SOC and Ca2+L channels may be involved in agonist-induced constriction of cerebral arteries, and 2) functional inhibition of iPLA2beta totally inhibited PE-induced Ca2+ influx and constriction in cerebral, mesenteric, and carotid arteries, whereas K+-induced Ca2+ influx and vasoconstriction mediated by Ca2+L channels were not affected. Thus iPLA2-dependent activation of SOC is crucial for agonist-induced Ca2+ influx and vasoconstriction in cerebral, mesenteric, and carotid arteries. We propose that, on PE-induced depletion of Ca2+ stores, nonselective SOC are activated via an iPLA2-dependent pathway and may produce a depolarization of SMC, which could trigger a secondary activation of Ca2+L channels and lead to Ca2+ entry and vasoconstriction.  相似文献   

15.
Activation of phospholipase C-coupled receptors leads to the release of Ca2+ from Ca2+ stores, and subsequent activation of store-operated cation (SOC) channels, promoting sustained Ca2+ influx. The most studied SOC channels are CRAC ("calcium-release activated calcium") channels exhibiting a very high selectivity for Ca2+. However, there are many SOC channels permeable for Ca2+ but having a lower selectivity. And while Ca2+ influx is important for many biological processes, little is known about the types of SOC channels and mechanisms of SOC channel activation. Previously, we described store-operated Imin channels in A431 cells. Here, by whole-cell recordings, we demonstrated that the store depletion activates two types of current in A431 cells--highly selective for divalent cations (presumably, ICRAC), and moderately selective (ISOC supported by Imin channels). These currents can be registered separately and have different developing time and amplitude. Coexisting of two different types of SOC channels in A431 cells seems to facilitate the control of intracellular Ca(2+)-dependent processes.  相似文献   

16.
The activation of store-operated Ca(2+) entry by Ca(2+) store depletion has long been hypothesized to occur via local interactions of the endoplasmic reticulum (ER) and plasma membrane, but the structure involved has never been identified. Store depletion causes the ER Ca(2+) sensor stromal interacting molecule 1 (STIM1) to form puncta by accumulating in junctional ER located 10-25 nm from the plasma membrane (see Wu et al. on p. 803 of this issue). We have combined total internal reflection fluorescence (TIRF) microscopy and patch-clamp recording to localize STIM1 and sites of Ca(2+) influx through open Ca(2+) release-activated Ca(2+) (CRAC) channels in Jurkat T cells after store depletion. CRAC channels open only in the immediate vicinity of STIM1 puncta, restricting Ca(2+) entry to discrete sites comprising a small fraction of the cell surface. Orai1, an essential component of the CRAC channel, colocalizes with STIM1 after store depletion, providing a physical basis for the local activation of Ca(2+) influx. These studies reveal for the first time that STIM1 and Orai1 move in a coordinated fashion to form closely apposed clusters in the ER and plasma membranes, thereby creating the elementary unit of store-operated Ca(2+) entry.  相似文献   

17.
Ca2+-dependent potentiation of muscarinic receptor-mediated Ca2+ elevation   总被引:1,自引:0,他引:1  
Muscarinic receptor-mediated increases in Ca(2+) in SH-SY5Y neuroblastoma cells consist of an initial fast and transient phase followed by a sustained phase. Activation of voltage-gated Ca(2+) channels prior to muscarinic stimulation resulted in a several-fold potentiation of the fast phase. Unlike the muscarinic response under control conditions, this potentiated elevation of intracellular Ca(2+) was to a large extent dependent on extracellular Ca(2+). In potentiated cells, muscarinic stimulation also activated a rapid Mn(2+) entry. By using known organic and inorganic blockers of cation channels, this influx pathway was easily separated from the known Ca(2+) influx pathways, the store-operated pathway and the voltage-gated Ca(2+) channels. In addition to the Ca(2+) influx, both IP(3) production and Ca(2+) release were also enhanced during the potentiated response. The results suggest that a small increase in intracellular Ca(2+) amplifies the muscarinic Ca(2+) response at several stages, most notably by unravelling an apparently novel receptor-activated influx pathway.  相似文献   

18.
Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.  相似文献   

19.
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. Although SOCs have not been molecularly identified, transient receptor potential (TRP) channels share a number of operational parameters with SOCs. The question of whether activation of SOCs and TRP channels is mediated by the inositol 1,4,5-trisphosphate receptor (InsP(3)R) was examined using the permeant InsP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB) in both mammalian and invertebrate systems. In HEK293 cells stably transfected with human TRPC3 channels, the actions of 2-APB to block carbachol-induced InsP(3)R-mediated store release and carbachol-induced Sr(2+) entry through TRPC3 channels were both reversed at high agonist levels, suggesting InsP(3)Rs mediate TRPC3 activation. However, electroretinogram recordings of the light-induced current in Drosophila revealed that the TRP channel-mediated responses in wild-type as well as trp and trpl mutant flies were all inhibited by 2-APB. This action of 2-APB is likely InsP(3)R-independent since InsP(3)Rs are dispensable for the light response. We used triple InsP(3)R knockout DT40 chicken B-cells to further assess the role of InsP(3)Rs in SOC activation. (45)Ca(2+) flux analysis revealed that although DT40 wild-type cells retained normal InsP(3)Rs mediating 2-APB-sensitive Ca(2+) release, the DT40InsP(3)R-k/o cells were devoid of functional InsP(3)Rs. Using intact cells, all parameters of Ca(2+) store function and SOC activation were identical in DT40wt and DT40InsP(3)R-k/o cells. Moreover, in both cell lines SOC activation was completely blocked by 2-APB, and the kinetics of action of 2-APB on SOCs (time dependence and IC(50)) were identical. The results indicate that (a) the action of 2-APB on Ca(2+) entry is not mediated by the InsP(3)R and (b) the effects of 2-APB provide evidence for an important similarity in the function of invertebrate TRP channels, mammalian TRP channels, and mammalian store-operated channels.  相似文献   

20.
Sympathetic adrenergic nerves maintain the flaccid state of the penis through the tonic release of norepinephrine that contracts trabecular and arterial smooth muscle. Simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and tension and experiments with alpha-toxin-permeabilized arteries were performed in branches of the rat dorsal penile artery to investigate the intracellular Ca(2+) signaling pathways underlying alpha(1)-adrenergic vasoconstriction. Phenylephrine increased both [Ca(2+)](i) and tension, these increases being abolished by extracellular Ca(2+) removal and reduced by about 50% by the L-type Ca(2+) channel blocker nifedipine (0.3 microM). Non-L-type Ca(2+) entry through store-operated channels was studied by inhibiting the sarcoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid (CPA). CPA (30 microM) induced variable phasic contractions that were abolished by extracellular Ca(2+) removal and by the store-operated channels antagonist 2-aminoethoxydiphenyl borate (2-APB, 50 microM) and largely inhibited by nifedipine (0.3 microM). CPA induced a sustained increase in [Ca(2+)](i) that was reduced in a Ca(2+)-free medium. Under conditions of L-type channels blockade, Ca(2+) readmission after store depletion with CPA evoked a sustained and marked elevation in [Ca(2+)](i) not coupled to contraction. 2-APB (50 microM) inhibited the rise in [Ca(2+)](i) evoked by CPA and the nifedipine-insensitive increases in both [Ca(2+)](i) and contraction elicited by phenylephrine. In alpha-toxin-permeabilized penile arteries, activation of G proteins with guanosine 5'-O-(3-thiotriphosphate) and of the alpha(1)-adrenoceptor with phenylephrine both enhanced the myofilament sensitivity to Ca(2+). This Ca(2+) sensitization was reduced by selective inhibitors of PKC, tyrosine kinase (TK), and Rho kinase (RhoK) by 43%, 67%, and 82%, respectively. As a whole, the present data suggest the alpha(1)-adrenergic vasoconstriction in penile small arteries involves Ca(2+) entry through both L-type and 2-APB-sensitive receptor-operated channels, as well as Ca(2+) sensitization mechanisms mediated by PKC, TK, and RhoK. A capacitative Ca(2+) entry coupled to noncontractile functions of the smooth muscle cell is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号