首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Khan MK  Miller AL  Bowler BE 《Biochemistry》2012,51(17):3586-3595
We use a host-guest approach to evaluate the effect of Trp guest residues relative to Ala on the kinetics and thermodynamics of formation of His-heme loops in the denatured state of iso-1-cytochrome c at 1.5, 3.0, and 6.0 M guanidine hydrochloride (GdnHCl). Trp guest residues are inserted into an alanine-rich segment placed after a unique His near the N-terminus of iso-1-cytochrome c. Trp guest residues are either 4 or 10 residues from the His end of the 28-residue loop. We find the guest Trp stabilizes the His-heme loop at all GdnHCl concentrations when it is the 4th, but not the 10th, residue from the His end of the loop. Thus, residues near loop ends are most important in developing topological constraints in the denatured state that affect protein folding. In 1.5 M GdnHCl, the loop stabilization is ~0.7 kcal/mol, providing a thermodynamic rationale for the observation that Trp often mediates residual structure in the denatured state. Measurement of loop breakage rate constants, k(b,His), indicates that loop stabilization by the Trp guest residues occurs completely after the transition state for loop formation in 6.0 M GdnHCl. Under poorer solvent conditions, approximately half of the stabilization of the loop develops in the transition state, consistent with contacts in the denatured state being energetically downhill and providing evidence for funneling even near the rim of the folding funnel.  相似文献   

2.
We have characterized the stability and folding behavior of the isolated extrinsic PsbQ protein of photosystem II (PSII) from a higher plant, Spinacia oleracea, using intrinsic protein fluorescence emission and near- and far-UV circular dichroism (CD) spectroscopy in combination with differential scanning calorimetry (DSC). Experimental results reveal that both chemical denaturation using guanidine hydrochloride (GdnHCl) and thermal unfolding of PsbQ proceed as a two-state reversible process. The denaturation free-energy changes (DeltaG(D)) at 20 degrees C extrapolated from GdnHCl (4.0 +/- 0.6 kcal mol(-1)) or thermal unfolding (4.4 +/- 0.8 kcal mol(-1)) are very close. Moreover, the far-UV CD spectra of the denatured PsbQ registered at 90 degrees C in the absence and presence of 6.0 M GdnHCl superimpose, leading us to conclude that both denatured states of PsbQ are structurally and energetically similar. The thermal unfolding of PsbQ has been also characterized by CD and DSC over a wide pH range. The stability of PsbQ is at its maximum at pH comprised between 5 and 8, being wider than the optimal pH for oxygen evolution in the lumen of thylakoid membranes. In addition, no significant structural changes were detected in PsbQ between 50 and 55 degrees C in the pH range of 3-8, suggesting that PsbQ behaves as a soluble and stable particle in the lumen when it detaches from PSII under physiological stress conditions such as high temperature (45-50 degrees C) or low pH (<5.0). Sedimentation experiments showed that, in solution at 20 degrees C, the PsbQ protein is a monomer with an elongated shape.  相似文献   

3.
Thermal denaturation studies as a function of pH were carried out on wild-type iso-1-cytochrome c and three variants of this protein at the solvent-exposed position 73 of the sequence. By examining the enthalpy and Tm at various pH values, the heat capacity increment (delta Cp), which is dominated by the degree of change in nonpolar hydration upon protein unfolding, was found for the wild type where lysine 73 is normally present and for three variants. For the Trp 73 variant, the delta Cp value (1.15 +/- 0.17 kcal/mol K) decreased slightly relative to wild-type iso-1-cytochrome c (1.40 +/- 0.06 kcal/mol K), while for the Ile 73 (1.65 +/- 0.07 kcal/mol K) and the Val 73 (1.50 +/- 0.06 kcal/mol K) variants, delta Cp increased slightly. In previous studies, the Trp 73, Ile 73, and Val 73 variants have been shown to have decreased m-values in guanidine hydrochloride denaturations relative to the wild-type protein (Hermann L, Bowler BE, Dong A, Caughey WS. 1995. The effects of hydrophilic to hydrophobic surface mutations on the denatured state of iso-1-cytochrome c: Investigation of aliphatic residues. Biochemistry 34:3040-3047). Both the m-value and delta Cp are related to the change in solvent exposure upon unfolding and other investigators have shown a correlation exists between these two parameters. However, for this subset of variants of iso-1-cytochrome c, a lack of correlation exists which implies that there may be basic differences between the guanidine hydrochloride and thermal denaturations of this protein. Spectroscopic data are consistent with different denatured states for thermal and guanidine hydrochloride unfolding. The different response of m-values and delta Cp for these variants will be discussed in this context.  相似文献   

4.
Yu C  Gui C  Luo H  Chen L  Zhang L  Yu H  Yang S  Jiang W  Shen J  Shen X  Jiang H 《Biochemistry》2005,44(5):1453-1463
Spike glycoprotein of SARS coronavirus (S protein) plays a pivotal role in SARS coronavirus (SARS_CoV) infection. The immunological fragment of the S protein (Ala251-His641, SARS_S1b) is believed to be essential for SARS_CoV entering the host cell through S protein-ACE-2 interaction. We have quantitatively characterized the thermally induced and GuHCl-induced unfolding features of SARS_S1b using circular dichroism (CD), tryptophan fluorescence, and stopped-flow spectral techniques. For the thermally induced unfolding at pH 7.4, the apparent activation energy (E(app)) and transition midpoint temperature (Tm) were determined to be 16.3 +/- 0.2 kcal/mol and 52.5 +/- 0.4 degrees C, respectively. The CD spectra are not dependent on temperature, suggesting that the secondary structure of SARS_S1b has a relatively high thermal stability. GuHCl strongly affected SARS_S1b structure. Both the CD and fluorescent spectra resulted in consistent values of the transition middle concentration of the denaturant (Cm, ranging from 2.30 to 2.45 M) and the standard free energy change (deltaG(o), ranging from 2.1 to 2.5 kcal/mol) for the SARS_S1b unfolding reaction. Moreover, the kinetic features of the chemical unfolding and refolding of SARS_S1b were also characterized using a stopped-flow CD spectral technique. The obvious unfolding reaction rates and relaxation times were determined at various GuHCl concentrations, and the Cm value was obtained, which is very close to the data that resulted from CD and fluorescent spectral determinations. Secondary and three-dimensional structural predictions by homology modeling indicated that SARS_S1b folded as a globular-like structure by beta-sheets and loops; two of the four tryptophans are located on the protein surface, which is in agreement with the tryptophan fluorescence result. The three-dimensional model was also used to explain the recently published experimental results of S1-ACE-2 binding and immunizations.  相似文献   

5.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

6.
Attempts to increase protein stability by insertion of novel disulfide bonds have not always been successful. According to the two current models, cross-links enhance stability mainly through denatured state effects. We have investigated the effects of removal and addition of disulfide cross-links, protein flexibility in the vicinity of a cross-link, and disulfide loop size on the stability of Cucurbita maxima trypsin inhibitor-V (CMTI-V; 7 kD) by differential scanning calorimetry. CMTI-V offers the advantage of a large, flexible, and solvent-exposed loop not involved in extensive intra-molecular interactions. We have uncovered a negative correlation between retention time in hydrophobic column chromatography, a measure of protein hydrophobicity, and melting temperature (T(m)), an indicator of native state stabilization, for CMTI-V and its variants. In conjunction with the complete set of thermodynamic parameters of denaturation, this has led to the following deductions: (1) In the less stable, disulfide-removed C3S/C48S (Delta Delta G(d)(50 degrees C) = -4 kcal/mole; Delta T(m) = -22 degrees C), the native state is destabilized more than the denatured state; this also applies to the less-stable CMTI-V* (Delta Delta G(d)(50 degrees C) = -3 kcal/mole; Delta T(m) = -11 degrees C), in which the disulfide-containing loop is opened by specific hydrolysis of the Lys(44)-Asp(45) peptide bond; (2) In the less stable, disulfide-inserted E38C/W54C (Delta Delta G(d)(50 degrees C) = -1 kcal/mole; Delta T(m) = +2 degrees C), the denatured state is more stabilized than the native state; and (3) In the more stable, disulfide-engineered V42C/R52C (Delta Delta G(d)(50 degrees C) = +1 kcal/mole; Delta T(m) = +17 degrees C), the native state is more stabilized than the denatured state. These results show that a cross-link stabilizes both native and denatured states, and differential stabilization of the two states causes either loss or gain in protein stability. Removal of hydrogen bonds in the same flexible region of CMTI-V resulted in less destabilization despite larger changes in the enthalpy and entropy of denaturation. The effect of a cross-link on the denatured state of CMTI-V was estimated directly by means of a four-state thermodynamic cycle consisting of native and denatured states of CMTI-V and CMTI-V*. Overall, the results show that an enthalpy-entropy compensation accompanies disulfide bond effects and protein stabilization is profoundly modulated by altered hydrophobicity of both native and denatured states, altered flexibility near the cross-link, and residual structure in the denatured state.  相似文献   

7.
To investigate the pH dependence of the conformational stability of barnase, urea denaturation curves were determined over the pH range 2-10. The maximum conformational stability of barnase is 9 kcal mol-1 and occurs between pH 5 and 6. The dependence of delta G on urea concentration increases from 1850 cal mol-1 M-1 at high pH to about 3000 cal mol-1 M-1 near pH 3. This suggests that the unfolded conformations of barnase become more accessible to urea as the net charge on the molecule increases. Previous studies suggested that in 8 M urea barnase unfolds more completely than ribonuclease T1, even with the disulfide bonds broken [Pace, C.N., Laurents, D. V., & Thomson, J.A. (1990) Biochemistry 29, 2564-2572]. In support of this, solvent perturbation difference spectroscopy showed that in 8 M urea the Trp and Tyr residues in barnase are more accessible to perturbation by dimethyl sulfoxide than in ribonuclease T1 with the disulfide bonds broken.  相似文献   

8.
Qureshi SH  Moza B  Yadav S  Ahmad F 《Biochemistry》2003,42(6):1684-1695
The denaturation of bovine and horse cytochromes-c by weak salt denaturants (LiCl and CaCl(2)) was measured at 25 degrees C by observing changes in molar absorbance at 400 nm (Delta epsilon(400)) and circular dichroism (CD) at 222 and 409 nm. Measurements of Delta epsilon(400) and mean residue ellipticity at 409 nm ([theta](409)) gave a biphasic transition for both modes of denaturation of cytochromes-c. It has been observed that the first denaturation phase, N (native) conformation <--> X (intermediate) conformation and the second denaturation phase, X conformation <--> D (denatured) conformation are reversible. Conformational characterization of the X state by the far-UV CD, 8-anilino-1-naphthalene sulfonic acid (ANS) binding, and intrinsic viscosity measurements led us to conclude that the X state is a molten globule state. Analysis of denaturation transition curves for the stability of different states in terms of Gibbs energy change at pH 6.0 and 25 degrees C led us to conclude that the N state is more stable than the X state by 9.55 +/- 0.32 kcal mol(-1), whereas the X state is more stable than the D state by only 1.40 +/- 0.25 kcal mol(-1). We have also studied the effect of temperature on the equilibria, N conformation <--> X conformation and X conformation <--> D conformation in the presence of different denaturant concentrations using two different optical probes, namely, [theta](222) and Delta epsilon(400). These measurements yielded T(m), (midpoint of denaturation) and Delta H(m) (enthalpy change) at T(m) as a function of denaturant concentration. A plot of Delta H(m) versus corresponding T(m) was used to determine the constant-pressure heat capacity change, Delta C(p) (= ( partial differential Delta H(m)/ partial differential T(m))(p)). Values of Delta C(p) for N conformation <--> X conformation and X conformation <--> D conformation is 0.92 +/- 0.02 kcal mol(-1) K(-1) and 0.41 +/- 0.01 kcal mol(-1) K(-1), respectively. These measurements suggested that about 30% of the hydrophobic groups in the molten globule state are not accessible to the water.  相似文献   

9.
Thermodynamic parameters describing the phage 434 Cro protein have been determined by calorimetry and, independently, by far-UV circular dichroism (CD) measurements of isothermal urea denaturations and thermal denaturations at fixed urea concentrations. These equilibrium unfolding transitions are adequately described by the two-state model. The far-UV CD denaturation data yield average temperature-independent values of 0.99 +/- 0.10 kcal mol(-)(1) M(-)(1) for m and 0.98 +/- 0.05 kcal mol(-)(1) K(-)(1) for DeltaC(p)()(,U), the heat capacity change accompanying unfolding. Calorimetric data yield a temperature-independent DeltaC(p)()(,U) of 0.95 +/- 0.30 kcal mol(-)(1) K(-)(1) or a temperature-dependent value of 1.00 +/- 0.10 kcal mol(-)(1) K(-)(1) at 25 degrees C. DeltaC(p)()(,U) and m determined for 434 Cro are in accord with values predicted using known empirical correlations with structure. The free energy of unfolding is pH-dependent, and the protein is completely unfolded at pH 2.0 and 25 degrees C as judged by calorimetry or CD. The stability of 434 Cro is lower than those observed for the structurally similar N-terminal domain of the repressor of phage 434 (R1-69) or of phage lambda (lambda(6)(-)(85)), but is close to the value reported for the putative monomeric lambda Cro. Since a protein's structural stability is important in determining its intracellular stability and turnover, the stability of Cro relative to the repressor could be a key component of the regulatory circuit controlling the levels and, consequently, the functions of the two proteins in vivo.  相似文献   

10.
A previous report (Hirose, M., Akuta, T., and Takahashi, N. (1989) J. Biol. Chem. 264, 16867-16872) has shown that for the efficient oxidative refolding of disulfide-reduced ovotransferrin, a preincubation under reduced conditions at a low temperature is essential. To study the renaturation pathway, the disulfide-reduced N-terminal half-molecule of ovotransferrin was analyzed by CD spectrum. The reduced protein was found to take, at low temperatures, a partially folded conformation that can be distinguished from both the native and denatured states. The folded protein was in a metastable state with delta GD value of 2.2-2.8 kcal/mol at 6 degrees C. The conformation was variable depending on temperature conditions; its stability was decreased at a lower temperature (1.0-1.2 kcal/mol at 0 degrees C). Subsequent reoxidation at 6 degrees C by oxidized glutathione led efficiently the reduced protein to the correctly renatured form having the iron-binding capacity, indicating that the partially folded state is the immediate precursor to subsequent oxidative refolding.  相似文献   

11.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   

12.
Benjwal S  Jayaraman S  Gursky O 《Biochemistry》2005,44(30):10218-10226
High-density lipoproteins (HDL) remove cholesterol from peripheral tissues and thereby help to prevent atherosclerosis. Nascent HDL are discoidal complexes composed of a phospholipid bilayer surrounded by protein alpha-helices that are thought to form extensive stabilizing interhelical salt bridges. Earlier we showed that HDL stability, which is necessary for HDL functions, is modulated by kinetic barriers. Here we test the role of electrostatic interactions in the kinetic stability by analyzing the effects of salt, pH, and point mutations on model discoidal HDL reconstituted from human apolipoprotein C-1 (apoC-1) and dimyristoyl phosphatidylcholine (DMPC). Circular dichroism, Trp fluorescence, and light scattering data show that molar concentrations of NaCl or Na(2)SO(4) increase the apparent melting temperature of apoC-1:DMPC complexes by up to 20 degrees C and decelerate protein unfolding. Arrhenius analysis shows that 1 M NaCl stabilizes the disks by deltaDeltaG* approximately equal 3.5 kcal/mol at 37 degrees C and increases the activation energy of their denaturation and fusion by deltaE(a) approximately equal deltaDeltaH* approximately equal 13 kcal/mol, indicating that the salt-induced stabilization is enthalpy-driven. Denaturation studies in various solvent conditions (pH 5.7-8.2, 0-40% sucrose, 0-2 M trimethylamine N-oxide) suggest that the salt-induced disk stabilization results from ionic screening of unfavorable short-range Coulombic interactions. Thus, the dominant electrostatic interactions in apoC-1:DMPC disks are destabilizing. Comparison of the salt effects on the protein:lipid complexes of various composition reveals an inverse correlation between the lipoprotein stability and the salt-induced stabilization and suggests that short-range electrostatic interactions significantly contribute to lipoprotein stability: the better-optimized these interactions are, the more stable the complex is.  相似文献   

13.
Comparatively little is known about the role of non-native interactions in protein folding and their role in both folding and stability is controversial. We demonstrate that non-native electrostatic interactions involving specific residues in the denatured state can have a significant effect upon protein stability and can persist in the transition state for folding. Mutation of a single surface exposed residue, Lys12 to Met, in the N-terminal domain of the ribosomal protein L9 (NTL9), significantly increased the stability of the protein and led to faster folding. Structural and energetic studies of the wild-type and K12M mutant show that the 1.9 kcal mol(-1) increase in stability is not due to native state effects, but rather is caused by modulation of specific non-native electrostatic interactions in the denatured state. pH dependent stability measurements confirm that the increased stability of the K12M is due to the elimination of favorable non-native interactions in the denatured state. Kinetic studies show that the non-native electrostatic interactions involving K12 persist in the transition state. The analysis demonstrates that canonical Phi-values can arise from the disruption of non-native interactions as well as from the development of native interactions.  相似文献   

14.
Trehalases from a thermophilic fungus Thermomyces lanuginosus (M(r) 145 kDa) and a mesophilic fungus Neurospora crassa (M(r) 437 kDa) were purified to compare their thermal characteristics and kinetic constants. Both trehalases were maximally active at 50 degrees C, had an acidic pH optimum and were glycoproteins (20% and 43%, w/w, carbohydrate content for T. lanuginosus and N. crassa, respectively). At their temperature optimum, their K(m) was similar (0.57 and 0.52 mM trehalose, for T. lanuginosus and N. crassa, respectively) but the V(max) of N. crassa enzyme was nine times higher than of T. lanuginosus enzyme. The catalytic efficiency, k(cat)/K(m), for N. crassa trehalase was one order of magnitude higher (6.2 x 10(6) M(-1) s(-1)) than of T. lanuginosus trehalase (4 x 10(5) M(-1) s(-1)). At their T(opt) (50 degrees C), trehalase from both sources exhibited similar thermostability (t(1/2)6 h). The energy of activation, E(a), for T. lanuginosus trehalase was 15.12 kcal mol(-1) and for N. crassa trehalase it was 9.62 kcal mol(-1). The activation energy for thermal inactivation for the N. crassa enzyme (92 kcal mol(-1)) was two-fold higher than for the T. lanuginosus enzyme (46 kcal mol(-1)). The present study shows that the trehalase of N. crassa is not only more stable but also a better catalyst than the T. lanuginosus enzyme.  相似文献   

15.
Unfolding and refolding studies on porcine odorant binding protein (pOBP) have been performed at pH 7 in the presence of guanidinium hydrochloride (GdnHCl). Unfolding, monitored by following changes of protein fluorescence and circular dichroism (CD), was found to be a reversible process, in terms of recovered structure and function. The equilibrium transition data were fitted by a simple two-state sigmoidal function of denaturant concentration and the thermodynamic folding parameters, derived from the two techniques, were very similar (average values: C(1/2) approximately 2.4 M, m approximately 2 kcal mol(-1) M(-1), DeltaG(unf,w)(0) approximately 4.7 kcal mol(-1)). The transition was independent of protein concentration, indicating that only monomeric species are involved. Only a minor protective effect by the fluorescent ligand 1-amino-anthracene (AMA) against protein unfolding was detected, whereas dihydromyrcenol (DHM) stabilised the protein to a larger extent (DeltaC(1/2) approximately 0.5 M). Refolding was complete, when the protein, denatured with GdnHCl, was diluted with buffer. On the other hand, refolding by dialysis was largely prevented by concomitant aggregation. The present results on pOBP are compared with those on bovine OBP (bOBP) [Biochim. Biophys. Acta 1599 (2002) 90], where subunit folding is accompanied by domain swapping. We finally suggest that the generally observed two-state folding of many lipocalins is probably favoured by their beta-barrel topology.  相似文献   

16.
Y Chi  T K Kumar  H M Wang  M C Ho  I M Chiu  C Yu 《Biochemistry》2001,40(25):7746-7753
The thermodynamic parameters characterizing the conformational stability of the human acidic fibroblast growth factor (hFGF-1) have been determined by isothermal urea denaturation and thermal denaturation at fixed concentrations of urea using fluorescence and far-UV CD circular dichroism (CD) spectroscopy. The equilibrium unfolding transitions at pH 7.0 are adequately described by a two-state (native <--> unfolded state) mechanism. The stability of the protein is pH-dependent, and the protein unfolds completely below pH 3.0 (at 25 degrees C). hFGF-1 is shown to undergo a two-state transition only in a narrow pH range (pH 7.0-8.0). Under acidic (pH <6.0) and basic (pH >8.0) conditions, hFGF-1 is found to unfold noncooperatively, involving the accumulation of intermediates. The average temperature of maximum stability is determined to be 295.2 K. The heat capacity change (DeltaC(p)()) for the unfolding of hFGF-1 is estimated to be 2.1 +/- 0.5 kcal.mol(-1).K(-1). Temperature denaturation experiments in the absence and presence of urea show that hFGF-1 has a tendency to undergo cold denaturation. Two-dimensional (1)H-(15)N HSQC spectra of hFGF-1 acquired at subzero temperatures clearly show that hFGF-1 unfolds under low-temperature conditions. The significance of the noncooperative unfolding under acidic conditions and the cold denaturation process observed in hFGF-1 are discussed in detail.  相似文献   

17.
It is widely accepted that solvent-exposed sites in proteins play only a negligible role in determining protein energetics. In this paper we show that amino acid substitutions at the fully exposed Lys15 in bovine pancreatic trypsin inhibitor (BPTI) influenced the CD- and DSC-monitored stability: The T(den) difference between the least (P1 Trp) and the most stable (P1 His) mutant is 11.2 degrees C at pH 2.0. The DeltaH(den) versus T(den) plot for all the variants at three pH values (2.0, 2.5, 3.0) is linear (DeltaC(p,den) = 0.41 kcal* mole(-1) * K(-1); 1 cal = 4.18 J) leading to a DeltaG(den) difference of 2.1 kcal*mole(-1). Thermal denaturation of the variants monitored by CD signal at pH 2.0 in the presence of 6 M GdmCl again showed differences in their stability, albeit somewhat smaller (DeltaT(den) =7.1 degrees C). Selective reduction of the Cys14-Cys 38 disulfide bond, which is located in the vicinity of the P1 position did not eliminate the stability differences. A correlation analysis of the P1 stability with different properties of amino acids suggests that two mechanisms may be responsible for the observed stability differences: the reverse hydrophobic effect and amino acid propensities to occur in nonoptimal dihedral angles adopted by the P1 position. The former effect operates at the denatured state level and causes a drop in protein stability for hydrophobic side chains, due to their decreased exposure upon denaturation. The latter factor influences the native state energetics and results from intrinsic properties of amino acids in a way similar to those observed for secondary structure propensities. In conclusion, our results suggest that the protein-stability-derived secondary structure propensity scales should be taken with more caution.  相似文献   

18.
The 2 S seed storage protein, sunflower albumin 8 (SFA-8), contains an unusually high proportion of hydrophobic residues including 16 methionines (some of which may form a surface hydrophobic patch) in a disulfide cross-linked, alpha-helical structure. Circular dichroism and fluorescence spectroscopy show that SFA-8 is highly stable to denaturation by heating or chaotropic agents, the latter resulting in a reversible two-state unfolding transition. The small m(U) (-4.7 M(-1) at 10 degrees C) and DeltaC(p) (-0.95 kcal mol(-1) K(-1)) values indicate that relatively little nonpolar surface of the protein is exposed during unfolding. Commensurate with the unusual distribution of hydrophobic residues, stopped-flow fluorescence data show that the folding pathway of SFA-8 is highly atypical, in that the initial product of the rapid collapse phase of folding is a compact nonnative state (or collection of nonnative states) that must unfold before acquiring the native conformation. The inhibited folding reaction of SFA-8, in which the misfolded state (m(M) = -0.95 M(-1) at 10 degrees C) is more compact than the transition state for folding (m(T) = -2.5 M(-1) at 10 degrees C), provides direct kinetic evidence for the transient misfolding of a protein.  相似文献   

19.
The thermodynamic and spectroscopic properties of a cysteine-free variant of Escherichia coli dihydrofolate reductase (AS-DHFR) were investigated using the combined effects of urea and temperature as denaturing agents. Circular dichroism (CD), absorption, and fluorescence spectra were recorded during temperature-induced unfolding at different urea concentrations and during urea-induced unfolding at different temperatures. The first three vectors obtained by singular-value decomposition of each set of unfolding spectra were incorporated into a global analysis of a unique thermodynamic model. Although individual unfolding profiles can be described as a two-state process, a simultaneous fit of 99 vectors requires a three-state model as the minimal scheme to describe the unfolding reaction along both perturbation axes. The model, which involves native (N), intermediate (I), and unfolded (U) states, predicts a maximum apparent stability, DeltaG degrees (NU), of 6 kcal mol(-)(1) at 15 degrees C, an apparent m(NU) value of 2 kcal mol(-)(1) M(-)(1), and an apparent heat capacity change, DeltaC(p)()(-NU), of 2.5 kcal mol(-)(1) K(-)(1). The intermediate species has a maximum stability of approximately 2 kcal mol(-)(1) and a compactness closer to that of the native than to that of the unfolded state. The population of the intermediate is maximal ( approximately 70%) around 50 degrees C and falls below the limits of detection of > or =2 M urea or at temperatures of <35 or >65 degrees C. The fluorescence properties of the equilibrium intermediate resemble those of a transient intermediate detected during refolding from the urea-denatured state, suggesting that a tryptophan-containing hydrophobic cluster in the adenosine-binding domain plays a key role in both the equilibrium and kinetic reactions. The CD spectroscopic properties of the native state reveal the presence of two principal isoforms that differ in ligand binding affinities and in the packing of the adenosine-binding domain. The relative populations of these species change slightly with temperature and do not depend on the urea concentration, implying that the two native isoforms are well-structured and compact. Global analysis of data from multiple spectroscopic probes and several methods of unfolding is a powerful tool for revealing structural and thermodynamic properties of partially and fully folded forms of DHFR.  相似文献   

20.
A Giletto  C N Pace 《Biochemistry》1999,38(40):13379-13384
The side-chain carboxyl of Asp 76 in ribonuclease T1 (RNase T1) is buried, charged, non-ion-paired, and forms three good intramolecular hydrogen bonds (2.63, 2.69, and 2.89 A) and a 2.66 A hydrogen bond to a buried, conserved water molecule. When Asp 76 was replaced by Asn, Ser, and Ala, the conformational stability of the protein decreased by 3.1, 3.2, and 3.7 kcal/mol, respectively. The stability was measured as a function of pH for wild-type RNase T1 and the D76N mutant and showed that the pH dependence below pH 3 was almost entirely due to Asp 76. The pK of Asp 76 is 0.5 in the native state and 3.7 in the denatured state. Thus, the hydrogen bonding of the carboxyl group of Asp 76 contributes more than half of the net stability of RNase T1 at pH 7. In addition, the charged carboxyl of Asp 76 stabilizes structure in the denatured states of RNase T1 that is not present in D76N, D76S, and D76A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号