首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors incubated adrenal mitochondria to study the in vitro action of cortisol and testosterone on the transformation of corticosterone and 18-hydroxycorticosterone into aldosterone. The results show that cortisol at concentrations of 5 × 10−6 and 10−4 M inhibit the conversion of corticosterone into aldosterone by 23.6 to 90%; testosterone 5 × 10−5 and 10−4 M inhibit the reaction by 78.4 and 87.2%, respectively. The inhibition of the conversion of 18-hydroxycorticosterone into aldosterone is 12.5 to 91% by cortisol with concentrations ranging from 5 × 10−7 to 5 × 10−5 M and testosterone 5 × 10−5 and 10−4 M inhibits the reaction by 87.3 and 91%, respectively. Aldosterone (10−8 and 10−6 M) does not inhibit aldosterone biosynthesis from corticosterone or 18-hydroxycorticosterone. It thus appears that cortisol and testosterone have an effect on the aldosterone biosynthesis pathways in mitochondria. This action may be located at the binding site of the cytochrome P450 11β, which catalyzes all hydroxylation steps in the mineralocorticoid biosynthesis pathway. Because cortisol and testosterone may interfere with aldosterone biosynthesis, and since functional zonation is expected in adrenal carcinomas, the presence of these steroids in substantial amounts could explain the very low plasma aldosterone level usually observed, in adrenal carcinomas studies in our laboratory.  相似文献   

2.
Palythoa psammophilia Walsh & Bowers has a well coordinated, stereotyped feeding response, the culminating step of which is ingestion; this may be elicited by the synergistic effect of the tripeptide glutathione and the -imino acid, proline. Either activator acting separately causes responses only at high concentrations (above 10−5 M for glutathione; above 10−4 M for proline) in a reduced number of animals and at a low rate (5.00 ± 1.73 min in 5 × 10−3 M solutions of glutathione; 11.10±3.74 min in 5 × 10−3 M solutions of proline). Highest percentages of response were obtained in combinations where glutathione was at a concentration of 5 × 10−3 M and proline at 5 × 10−4 M or in combinations of glutathione at concentrations 5 × 10−6 M and proline at 5 × 10−5 M. The speed of ingestion is considerably enhanced when these activators are combined (1.17±1.18 min).  相似文献   

3.
It is well recognized that estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of the progestin, nomegestrol acetate, on the estrone sulfatase and 17β-hydroxy-steroid dehydrogenase (17β-HSD) activities of MCF-7 and T-47D human breast cancer cells. Using physiological doses of estrone sulfate (E1S: 5 × 10−9 M), nomegestrol acetate blocked very significantly the conversion of E1S to E2. In the MCF-7 cells, using concentrations of 5 × 10−6 M and 5 × 10−5 M of nomegestrol acetate, the decrease of E1S to E2 was, respectively, −43% and −77%. The values were, respectively, −60% and −71% for the T-47D cells. Using E1S at 2 × 10−6 M and nomegestrol acetate at 10−5 M, a direct inhibitory effect on the enzyme of −36% and −18% was obtained with the cell homogenate of the MCF-7 and T-47D cells, respectively. In another series of studies, it was observed that after 24 h incubation of a physiological concentration of estrone (E1: 5 × 10−9 M) this estrogen is converted in a great proportion to E2. Nomegestrol acetate inhibits this transformation by −35% and −85% at 5 × 10−7 M and 5 × 10−5 M, respectively in T-47D cells; whereas in the MCF-7 cells the inhibitory effect is only significant, −48%, at 5 × 10−5 M concentration of nomegestrol acetate. It is concluded that nomegestrol acetate in the hormone-dependent MCF-7 and T-47D breast cancer cells significantly inhibits the estrone sulfatase and 17β-HSD activities which converts E1S to the biologically active estrogen estradiol. This inhibition provoked by this progestin on the enzymes involved in the biosynthesis of E2 can open new clinical possibilities in breast cancer therapy.  相似文献   

4.
We used a direct polymerase chain reaction (PCR) method for quantification of HPRT exons 2+3 deletions and t(14;18) translocations as a measure of illegitimate V(D)J recombination. We determined the baseline frequencies of these two mutations in mononuclear leukocyte DNA from the umbilical cord blood of newborns and from the peripheral blood of adults. In an initial group of 21 newborns, no t(14;18) translocations were detected (<0.049×10−7). The frequency of HPRT exons 2+3 deletions was 0.10×10−7 per mononuclear leukocyte, lower than expected based on the T-cell proportion of this cell fraction (55%–70%) and previous results using the T-cell cloning assay (2–3×10−7 per clonable T-cell). Phytohemagglutinin (PHA), as used in the T-cell cloning assay, was examined for its effect on the frequencies of these mutation events in mononuclear leukocytes from an additional 11 newborns and from 12 adults. There was no significant effect of PHA on t(14;18) translocations which were rare among the newborns (1 detected among 2.7×108 leukocytes analyzed), and which occurred at frequencies from <1×10−7 (undetected) to 1.6×10−4 among the adults. The extremely high frequencies of t(14;18)-bearing cells in three adults were due mainly to in vivo expansion of two to six clones. However, PHA appeared to stimulate a modest (although not significant) increase in the frequency of HPRT exons 2+3 deletions in the leukocytes of the newborns, from 0.07×10−7 to 0.23×10−7. We show that both the direct PCR assay and the T-cell cloning assay detect similar frequencies of HPRT exons 2+3 deletions when calculations are normalized to blood volume, indicating that the apparent discrepancy is probably due to the different population of cells used in the assays. This direct PCR assay may have utility in characterizing the effects of environmental genotoxic agents on this clinically important recombination mechanism.  相似文献   

5.
Biological properties of amino-terminal PTHrP analogues modified in the region 11–13 were examined using ROS 17/2.8 cells. [Leu11,D-Trp12,Arg13,Tyr36]PTHrP(1–36)amide had a 17-fold lower binding affinity for the receptor (apparent Kd: 5 × 10−8 M) than [Tyr36]PTHrP(1–36)amide or [Arg11,13,Tyr36]PTHrP(1–36)amide (apparent Kd for both: 2 × 10−9 M). Moreover, it is only a weak partial agonist despite completely inhibiting radioligand binding. [Leu11,D-Trp12,Arg13,Tyr36,Cys38]PTHrP(7–38) and PTHrP(7–34)amide had similar receptor affinities (apparent Kds: 5 × 10−8 M and 8 × 10−8 M), while that of [Nle8,18,Tyr34]bPTH(7–34)amide was more than 10-fold lower (apparent Kd: 2 × 10−6 M). These changes in biological properties suggest that high affinity receptor binding requires both amino- and carboxyl-terminal domains of the PTHrP(1–36) sequence and/or intramolecular interactions which are impaired by the D-Trp substitution for Gly12.  相似文献   

6.
Both prostaglandins (PGs) and nitric oxide (NO) have cytoprotective and hyperemic effects in the stomach. However, the effect of NO on PG synthesis in gastric mucosal cells is unclear. We examined whether sodium nitroprusside (SNP), a releaser of NO, stimulates PG synthesis in cultured rabbit gastric mucus-producing cells. These cells did not release NO themselves. Co-incubation with SNP (2 × 10−4, 5 × 10−4, 10−3 M) increased PGE2 synthesis, and SNP (10−3 M) increased PGI2 synthesis in these cells. Hemoglobin, a scavenger of NO, (10−5 M) eliminated the increase in PGE2 synthesis by SNP, but methylene blue, an inhibitor of soluble guanylate cyclase, (5 × 10−5 M) did not affect the increase in PGE2 synthesis by SNP. 8-bromo guanosine 3′ : 5′-cyclic monophosphate (8-bromo cGMP), a cGMP analogue, (10−6, 10−5, 10−4, 10−3 M) did not affect PGE2 synthesis. These findings suggest that NO increased PGE2 and PGI2 synthesis via a cGMP-independent pathway in cultured rabbit gastric cells.  相似文献   

7.
We investigated the effect of NDMA and DNSGU on the induction of chromosomal aberrations and sister-chromatid exchanges (SCEs), as well as the influence of the former compound on cell-cycle kinetics in cultured cow peripheral lymphocytes. A clastogenic effect was observed in treated cell cultures at 6 or 12 × 10−5 M concentrations of NDMA and DNSGU, respectively, but no increase of chromosomal breaks was seen at the lowest dose. NDMA at 6 × 10−4 M was toxic to cow lymphocytes. NDMA and DNSGU induced statistical increases of SCEs at the test doses (6 or 12 × 10−6 and 6 or 12 × 10−5 M, respectively). In addition, treatment with NDMA at a dose of 6 × 10−5 M revealed significant heterogeneity of the first, second and third metaphases between treated and untreated groups. A reduction of the proliferation index and proliferation delay per cycle was shown too.  相似文献   

8.
We have designed and synthesized a series of small peptides containing a perfluoroalkyl ketone group at the C-terminal position of the angiotensin I sequence as inhibitors of human renin. From this series of compounds, 8 and 10 showed strong inhibition of human renin (IC50 = 3 × 10−9, 7 × 10−9 M, respectively). Compound 10 did not inhibit pepsin and cathepsin D at 10−4 M. Comparison of the IC50 of compound 8 and compound 11 (8.7 × 10−7 M) demonstrated the marked effect of the perfluoropropyl group on the potency of inhibition on renin, presumably due to the strong electron-withdrawing effect causing the ketone in 8 to exist predominantly as the hydrate — thus mimicking the tetrahedral transition state during hydrolysis of the scissile Leu10—Val11 amide bond.  相似文献   

9.
Guar gum has been modified by graft copolymerization with acrylic acid in aqueous medium using vanadium (V)–mercaptosuccinic acid redox system. The optimum reaction conditions affording maximum grafting ratio, efficiency, add on and conversion have been determined. The grafting parameters have been found to increase with increase in vanadium (V) concentration upto 1.0 × 10−2 mol dm−3, but these parameters decrease on further increasing the vanadium (V) concentration. On increasing the mercaptosuccinic acid concentration from 1.0 × 10−2 to 4.0 × 10−2 mol dm−3 grafting ratio, efficiency and add on increase up to 2.0 × 10−2 mol dm−3 but decrease with further increase in mercaptosuccinic acid concentration. On varying the acrylic acid concentration from 5.0 × 10−2 to 30.0 × 10−2 mol dm−3, maximum grafting ratio, efficiency and add on have been obtained at 20.0 × 10−2 mol dm−3. The grafting ratio, add on and conversion increase, on increasing the H+ ion concentration from 1.5 × 10−1 to 6.0 × 10−1 mol dm−3. On increasing the guar gum concentration the grafting parameters increase. The grafting ratio, add on and conversion have been found to increase with time period while efficiency started decreasing after 120 min. It has been observed that %G increases on increasing the temperature up to 35 °C. The graft copolymer has been characterized by IR spectroscopy and thermogravimetric analysis.  相似文献   

10.
Intact pZ189 DNA was allowed to replicate in FL-FEN-1 cell line that was established in this laboratory in which the expression of FEN-1 gene was blocked by dexamethasone-inducible expression of antisense RNA to FEN-1. E. coli MBM7070 was transfected with the replicated plasmid, and those with mutations in the supF gene were identified. The frequency of mutants that did not contain recognizable changes in the electrophoretic mobility of the plasmid DNA was scored. The frequency of such mutants was 19.1 × 10−4 (34/17781), significantly higher than those of 2.9 × 10−4 (4/13668) and 3.0 × 10−4 (3/9857) in the corresponding controls, respectively. Sequence analysis of the supF genes of these mutants showed that all (37/37) the base substitutions occurred at C:G base pairs; 68% (23/37) of the base substitutions were base transversions, while 32% (12/37) were transitions. Approximately 76% (23/37) of these base substitutions occurred frequently at nine positions; two of these sites contain triple pyrimidine (T or C) repeat upstream to the mutated base; four of these sites consist of 5′-TTN1N2 and mutations occurred at N1 site sequence; another two sites have the characteristics of triple A flanked at both 5′ and 3′ side by TCT, with the base substitution occurring at C in the context sequence. These data suggested that these sites are the hot spot of mutagenesis in plasmid replicated in FEN-1-deficient cells. Besides the mutator phenotype of the FEN-1-deficient cell, it was also demonstrated that FEN-1-deficient cell exhibited an increased N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) sensitive phenotype.  相似文献   

11.
Graft copolymer of k-carrageenan and N,N-dimethylacrylamide has been synthesized by free radical polymerization using peroxymonosulphate/glycolic acid redox pair in an inert atmosphere. The grafting parameters i.e. grafting ratio, add on and efficiency decrease with increase in concentration of k-carrageenan from 0.6 to 1.4 g dm−3 and hydrogen ion from 3 × 10−3 to 7 × 10−3 mol dm−3, but these grafting parameters increase with increase in concentration of N,N-dimethylacrylamide from 16 × 10−2 to 32 × 10−2 mol dm−3, and peroxymonosulphate from 0.8 × 10−2 to 2.4 × 10−2 mol dm−3. The metal ion sorption, swelling behaviour and flocculation properties have been studied. The intrinsic viscosity of pure and grafted samples has been measured by using Ubbelohde capillary viscometer. Flocculation capability of k-carrageenan and k-carrageenan-g-N,N-dimethylacrylamide for both coking and non-coking coals has been studied for the treatment of coal mine waste water. The graft copolymer has been characterized by Infrared (IR) spectroscopy and thermogravimetric analysis.  相似文献   

12.
An electrochemical biosensor for the determination of lysine to be used for rapid evaluation of food quality has been developed. Platinum electrodes have been coated by electropolymerisation with 1,2-diaminobenzene (1.2-DAB) using cyclic voltammetry. The reduction in the oxidation of interferents compared with the bare platinum electrode was 100% for ascorbic acid, 99% for acetaminophen and 99% for cysteine. The enzyme L-lysine--oxidase was then immobilised onto the polymer layer by passive adsorption and a calibration curve for lysine constructed. This gave a linear range of 1×10−5 mol/l to 1×10−3 mol/l and a limit of detection of 2×10−7 mol/l.  相似文献   

13.
Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2′:5′,2″-terthiophene-3′-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H2O2 in a choline solution at +0.6 V. The other one modified with ChO/HRP utilized the reduction process of H2O2 in a choline solution at −0.2 V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0×10−6 to 8.0×10−5 M and the other based on ChO/CPME from 1.0×10−6 to 5.0×10−5 M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0×10−7 and 4.0×10−7 M, respectively. The response time of sensors was less than 5 s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.  相似文献   

14.
Spontaneous mutation at the adenine phosphoribosyl transferase (APRT) locus in clone 707 of the Friend cell line was examined. The frequency of cells resistant to 2,6-diaminopurine (DAP) was found to be 2.6 × 10−5 with a mutation rate of 1.81 × 10−6 cell−1 generation−1. APRT activities in 9 DAP-resistant clones were found to vary between 0 and 27% the level observed in wild-type cells. It is suggested that clone 707 cells are heterozygous or functionally hemizygous at the APRT locus.  相似文献   

15.
The frequencies of chromosome aberrations in 135 workers from nuclear-power plants were compared with those in 135 age-matched controls. A total of 135,000 cells was scored. The frequencies of dicentric chromosome were 1.67 × 10−3 in the exposed group and 0.49 × 10−3 in the control group and those of chromosome-type deletion were 3.33 × 10−3 and 1.10 × 10−3, respectively. The frequencies of all types of chromosome aberrations in the exposed subjects were higher than those in the control group, but no significant trend of dose-dependent increase was observed when only the exposed group were considered. Poisson regression analysis, with both exposed and control included, showed that there was a significant association of chromosome aberration with radiation dose and the duration of work, but not with age, smoking habit and alcohol intake. It was also found that recent exposure to radiation, within the last 5 years, had contributed more to the observed chromosome aberration than earlier exposure.  相似文献   

16.
Data are reported for the binding of Ni2+, Co2+, and Mg2+ to the B-form of double-stranded poly(dG-dC) at ionic strength conditions I = 0.001 M, 0.01 M, and 0.1 M. The apparent binding constants for Ni2+ and Co2+ are about the same and are 2- to 3-fold higher than those for Mg2+. Kinetic studies indicate that Mg2+ binds to the polynucleotide mainly (or solely) as a mobile cloud (electrostatically, outer-sphere), whereas the transition metal ions undergo site binding (inner-sphere coordination) with poly(dG-dC). The kinetic data suggest that an Ni2+ ion coordinates to more than one binding site at the polynucleotide, presumably to G-N7 and a phosphate group.

At low ionic strength conditions the addition of Ni2+ induces a B → Z conformational transition in poly(dG-dC). As demonstrated by UV absorption and CD spectroscopy, the transition occurs at I = 0.001 M already when 3 × 10−5 – 7 × 10−5 M of Ni2+ are added to 8 × 10−5 M (in monomeric units) of poly(dG-dC), and at I = 0.01 M between 2.5 × 10−4 and 4.5 × 10−4 M of Ni2+. Using murexide as an indicator of the concentration of free Ni2+ ions, the amount of Ni2+ which is bound to the polynucleotide could be determined. At I = 0.001 M it was established that the B → Z transition begins when 1 Ni2+ is bound coordinatively per four base pairs, and the transition is complete when 1 Ni2+ is bound coordinatively per three base pairs. It is this coordinated Ni2+ which induces the B → Z transition.  相似文献   


17.
1-Methyl-1-nitrosourea (MNU) induced specific-locus mutations in mice in all spermatogenic stages except spermatozoa. After intraperitoneal injection of 70 mg/kg body weight of MNU a high yield of specific-locus mutations was observed in spermatids (21.8 × 10−5 mutations per locus per gamete). The highest mutational yield was induced in differentiating spermatogonia. In 1954 offspring we observed 5 specific-locus mutants (44.8 × 10 mutations per locus per gamete). In addition, 2 mosaics were recovered, which gave a combined mutation rate of 62.7 × 10−5. In As spermatogonia the mutation rate was 3.9 × 10−5. The same dose of 70 mg/kg of MNU induced dominant lethal mutations 5–48 days post treatment, mainly due to post-implantation loss in spermatids and spermatocytes. It is interesting to compare the induction pattern of mutations by MNU with methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and ethylnitrosourea (ENU). Based on the different spermatogenic response of the induction of specific-locus mutations we can characterize the 4 mutagens in the following way: EMS = MMS ≠ MNU ≠ ENU.  相似文献   

18.
The porcine pancrease lipase was immobilized by entrapment in the beads of K-carrageenan and cured by treatment with polyethyleneimine (PEI) in the phosphate buffer. The retention of hydrolytic activity of lipase and compressive strength of the beads were examined. The activity of free and immobilized lipase was assessed by using olive oil as the substrate. The immobilized enzyme exhibited a little shift towards acidic pH for its optimal activity and retained 50% of its activity after 5 cycles. When the enzyme concentration was kept constant and substrate concentration was varied the Km and Vmax were observed to be 0.18 × 10−2 and 0.10, and 0.10 × 10−2 and 0.09 respectively, for free and for entrapped enzymes. When the substrate concentration was kept constant and enzyme concentration was varied, the values of Km and Vmax were observed to be 0.19 × 10−7 and 0.41, and 0.18 × 10−7 and 0.41 for free and entrapped enzymes. Though this indicates that there is no conformational change during immobilization, it also shows that the reaction velocity depends on the concentration. Immobilized enzyme showed improved thermal and storage stability. Hydrolysis of olive oil in organic–aqueous two-phase system using fixed bed reactor was carried out and conditions were optimized. The enzyme in reactor retained 30% of its initial activity after 480 min (12 cycles).  相似文献   

19.
The enzymatic activity of mushroom tyrosinase was investigated using catechin as substrate in selected organic solvent media. The results showed that optimal tyrosinase activity was obtained at pH 6.2, 6.6, 6.0 and 6.2 in the organic solvent media of heptane, toluene, dichloromethane, and dichloroethane, respectively, and at a temperature between 25°C and 27.5°C. In addition, the kinetic studies showed that the Km values were 5.38, 1.03, 2.52 and 4.03 mM, for the tyrosinase-catechin biocatalysis in the reaction media of heptane, toluene, dichloromethane, and dichloroethane, respectively, while the corresponding Vmax values were 1.22×10−3, 0.33×10−3, 1.47×10−3 and 1.20×10−3 δA per μg protein per second, respectively. The use of acetone as co-solvent for the tyrosinase-catechin biocatalysis showed that acetone concentrations ranging from 5% to 30% (v/v) in the heptane reaction medium produced a decrease of 4.3% to 96.7% in tyrosinase activity. The results also indicated that the presence of 12.5% acetone in the reaction medium of dichloromethane, and 22.0% in those of toluene and dichloroethane produced a maximal increase of 42.6%, 92.1% and 71.8%, respectively, in tyrosinase activity. However, the overall findings indicated that additional increases in acetone concentration resulted in an inhibition of tyrosinase activity.  相似文献   

20.
We have investigated the genotoxic effects of 1-(2-hydroxyethyl)-1-nitrosourea (HENU). We have chosen this agent because of its demonstrated ability to produce N7-(2-hydroxyethyl) guanine (N7-HOEtG) and O6-(2-hydroxyethyl) 2′-deoxyguanosine (O6-HOEtdG); two of the DNA alkylation products produced by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU). For these studies, we have used the Big Blue Rat-2 cell line that contains a lambda/lacI shuttle vector. Treatment of these cells with HENU produced a dose dependent increase in the levels of N7-HOEtG and O6-HOEtdG as quantified by HPLC with electrochemical detection. Treatment of Big Blue Rat-2 cells with either 0, 1 or 5 mM HENU resulted in mutation frequencies of 7.2±2.2×10−5, 45.2±2.9×10−5 and 120.3±24.4×10−5, respectively. Comparison of the mutation frequencies demonstrates that 1 and 5 mM HENU treatments have increased the mutation frequency by 6- and 16-fold, respectively. This increase in mutation frequency was statistically significant (P<0.001). Sequence analysis of HENU-induced mutations have revealed primarily G:C→A:T transitions (52%) and a significant number of A:T→T:A transversions (16%). We propose that the observed G:C→A:T transitions are produced by the DNA alkylation product O6-HOEtdG. These results suggest that the formation of O6-HOEtdG by BCNU treatment contributes to its observed mutagenic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号