首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relaxation kinetics of the gel-liquid crystalline transition of phosphatidylcholine (DC14PC, DC16PC, and DC18PC) multilamellar vesicles have been examined using volume-perturbation calorimetry. The time-dependent temperature and pressure changes associated with a periodic volume perturbation are monitored in real time. Data collected in the time domain are transformed to the frequency domain using Fourier series representations of the perturbation and response functions. Because a very small perturbation is imposed during the experiment, linear response theory is suitable for analysis of the relaxation process. The Laplace transform of the classical Kolmogorov-Avrami relation of transition kinetics is used to describe the dynamic response in the frequency domain. For DC14PC and DC16PC, the relaxation process is better fit with an effective dimensionality of n = 2 rather than n = 1. For DC18PC, we estimate that an effective dimensionality of approximately 1.5 will best fit the data. These results indicate that the gel-liquid crystalline transition of these lipid bilayers follows the classical Kolmogorov-Avrami kinetic model with an effective dimensionality greater than 1 and the assumption of simple exponential decay (n = 1) commonly used in data analysis may not always be valid for lipid transitions. Insofar as the dimensionality of the relaxation reflects the geometry of fluctuating lipid clusters, this parameter may be useful in connecting experimental thermodynamic and kinetic results with those obtained from Monte Carlo simulations.  相似文献   

2.
The effects of the anesthetic dibucaine on the relaxation kinetics of the gel-liquid crystalline transition of dipalmitoylphosphatidylcholine (DC16PC) multilamellar vesicles have been investigated using volume-perturbation calorimetry. The temperature and pressure responses to a periodic volume perturbation were measured in real time. Data collected in the time domain were subsequently converted into and analyzed in the frequency domain using Fourier series representations of the perturbation and response functions. The Laplace transform of the classical Kolmogorov-Avrami kinetic relation was employed to describe the relaxation dynamics in the frequency domain. The relaxation time of anesthetic-lipid mixtures, as a function of the fractional degree of melting, appears to be qualitatively similar to that of pure lipid systems, with a pronounced maximum, tau max, observed at a temperature corresponding to greater than 75% melting. The tau max decreases by a factor of approximately 2 as the nominal anesthetic/lipid mole ratio increases from 0 to 0.013 and exhibits no further change as the nominal anesthetic/lipid mole ratio is increased. However, the fractional dimensionality of the relaxation process decreases monotonically from slightly less than two to approximately one as the anesthetic/lipid mole ratio increases from 0 to 0.027. At higher ratios, the dimensionality appears to be less than one. These results are interpreted in terms of the classical kinetic theory and related to those obtained from Monte Carlo simulations. Specifically, low concentrations of dibucaine appear to reduce the average cluster size and cause the fluctuating lipid clusters to become more ramified. At the highest concentration of dibucaine, where n < 1, the system must be kinetically heterogeneous.  相似文献   

3.
J R Silvius 《Biochemistry》1990,29(12):2930-2938
A novel method that uses a carbazole-labeled fluorescent phosphatidylcholine, which partitions preferentially into liquid-crystalline lipid domains, to monitor the kinetics and the extents of thermotropic and ionotropic lateral phase separations in vesicles combining brominated and nonbrominated phosphatidylcholines (PCs), phosphatidic acids (PAs), and phosphatidylserines (PSs) is described. The calcium-induced segregation of several nonbrominated PA species in liquid-crystalline brominated PC bilayers behaves as a well-defined lateral phase separation; the residual solubility of the PA component in the PC-rich phase in the presence of calcium can vary severalfold depending on the PA acyl chain composition. PC/PS mixtures show a pronounced tendency to form metastable solutions in the presence of calcium, particularly when they contain less than equimolar proportions of PS. This metastability is not readily relaxed by repeated freeze-thawing of vesicles in the presence of calcium, by avidin-mediated contacts between PC/PS vesicles containing biotinylated lipids, or by calcium-induced lateral segregation of PA in the same vesicles. Different PS species exhibit different apparent residual solubilities in liquid-crystalline PC bilayers, ranging from less than 10 mol % for dimyristoyl-PS to ca. 45 mol% for dioleoyl-PS, after prolonged incubations of PC/PS multilamellar vesicles with excess calcium. Results are presented, obtained by using the above lipid-segregation assay and parallel assays of intervesicle lipid mixing, that raise questions concerning the relevance of the equilibrium behavior of calcium-treated PS/PC mixtures to the relatively rapid interactions (fusion and lipid mixing) of PC/PS vesicles that follow initial exposure to calcium.  相似文献   

4.
Pressure-jump experiments were performed on vesicles and liposomes of dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine following the time course of solution turbidity. For both lipids two relaxation effects were evaluated the time constants of which exhibit clear maxima at the midpoint of the phase transition. The time constants lie for vesicles in the 100 μs and 1 ms ranges and for liposomes in the 1 ms and 10 ms ranges. The processes are slightly faster for dimyristoyl phosphatidylcholine than for dipalmitoyl phosphatidylcholine. All relaxation times are concentration-independent. The time constant and amplitude behaviours indicate that all processes are cooperative in agreement with previous interpretations. It is demonstrated that cooperative units can be evaluated from the relaxation amplitudes. These are of the same order of magnitude as those obtained from static experiments. On the grounds of the present kinetic investigation we can state that the application of the linear Ising model to two-dimensional processes as attempted for the static lipid phase transition is inadequate.  相似文献   

5.
Current fluctuations in pure lipid membranes have been shown to occur under the influence of transmembrane electric fields (electroporation) as well as a result from structural rearrangements of the lipid bilayer during phase transition (soft perforation). We demonstrate that the ion permeability during lipid phase transition exhibits the same qualitative temperature dependence as the macroscopic heat capacity of a D15PC/DOPC vesicle suspension. Microscopic current fluctuations show distinct characteristics for each individual phase state. Although current fluctuations in the fluid phase show spikelike behavior of short timescales (∼2 ms) with a narrow amplitude distribution, the current fluctuations during lipid phase transition appear in distinct steps with timescales of ∼20 ms. We propose a theoretical explanation for the origin of timescales and permeability based on a linear relationship between lipid membrane susceptibilities and relaxation times near the phase transition.  相似文献   

6.
Photon correlation spectroscopy has been used to study capillary waves on black lipid membranes of glycerol monooleate at temperatures above the lipid transition. For the first time the tension and viscosity of solvent-free bilayers have been observed to display a frequency dependence. The variations of both parameters can be accounted for by a Maxwell viscoelastic fluid model having a relaxation time of 37 microseconds. The equilibrium (omega = 0) tension is compatible with literature values. The present results do not suffice to precisely define the specific molecular processes involved, but relaxation times similar to the present are associated with certain phenomena in phospholipid vesicles. Bilayers containing hydrocarbon solvent do not show such relaxation, presumably due to their weaker intermolecular interactions.  相似文献   

7.
P Johnson  P B Garland 《FEBS letters》1983,153(2):391-394
A method for measuring the slow rotational diffusion of lipids or lipid domains in membranes has been developed. It covers the time range from 20 microseconds-5 ms, and has a greater than 5 x 10(4) molecules of probe. The method uses acyl-substituted carbocyanine dyes as fluorescent triplet probes and a laser-microscope combination for excitation and measurement of the triplet state. Rotation rates in dimyristoylphosphatidylcholine vesicles were sensitive to the liquid-to-gel transition. Slow rotations with relaxation times of about 100 microseconds were detected at the transition temperature region.  相似文献   

8.
The folding-unfolding transition of Fe(III) cytochrome c has been studied with the new technique of multifrequency calorimetry. Multifrequency calorimetry is aimed at measuring directly the dynamics of the energetic events that take place during a thermally induced transition by measuring the frequency dispersion of the heat capacity. This is done by modulating the folding/unfolding equilibrium using a variable frequency, small oscillatory temperature perturbation (approximately 0.05-0.1 degrees C) centered at the equilibrium temperature of the system. Fe(III) cytochrome c at pH 4 undergoes a fully reversible folding/unfolding transition centered at 67.7 degrees C and characterized by an enthalpy change of 81 kcal/mol and heat capacity difference between unfolded and folded states of 0.9 kcal/K*mol. By measuring the temperature dependence of the frequency dispersion of the heat capacity in the frequency range of 0.1-1 Hz it has been possible to examine the time regime of the enthalpic events associated with the transition. The multifrequency calorimetry results indicate that approximately 85% of the excess heat capacity associated with the folding/unfolding transition relaxes with a single relaxation time of 326 +/- 68 ms at the midpoint of the transition region. This is the first time that the time regime in which heat is absorbed and released during protein folding/unfolding has been measured.  相似文献   

9.
Phospholipid exchange between bilayer membrane vesicles.   总被引:7,自引:0,他引:7  
The turbidity of lipid vesicles, freshly prepared by sonicating purified dimyristoyllecithin (DML) in dilute KCl solutions, was measured as a function of time at various temperatures. A sharp maximum in the rate of increase of turbidity is found just above the crystal:liquid-crystal phase transition temperature (Tm). The initial rate of turbidity increase is first order with respect to DML concentration. Electron and light microscopy reveal large vesicles which are not present before incubation or after incubation at temperatures far from the Tm. When temperature, rather than time, is the independent variable, a sharp drop in turbidity is seen at the Tm. The magnitude of this drop and the temperature at which it occurs were used to measure the rate of lipid transfer between vesicles composed of different lipids. A mixture of DML vesicles and dipalmitoyllecithin (DPL) vesicles exhibits sharp drops in turbidity at 24 and 41 degrees, the corresponding Tm's. With time, the magnitude of the transition at 24 degrees decreases while that which was originally at 41 degrees moves to lower temperatures and increases in magnitude. At equilibrium there is a single transition at 32.5 degrees characteristic of vesicles composed of equimolar DPL and DML. The rate at which equilibrium is approached increases at around 24 degrees and again around 41 degrees. These observations indicate that vesicles are in equilibrium with monomolecular lipid, the concentration of the latter being higher the shorter the lipid acyl group or the smaller the vesicle. DML molecules are therefore lost from small vesicles to large vesicles (DML system) or lost from DML vesicles to DML-DPL vesicles (mixed system). When DML vesicles containing a few percent brain gangliosides were studied, different behavior was observed; the initial rate of increase of turbidity becomes second order in lipid concentration, and the rate constant increases with increasing concentrations of KCl. The kinetic order, coupled with the fact that electrolyte reduces intervesicle electrostatic repulsion, argues that in this situation the mechanism of vesicle growth requires vesicle collision.  相似文献   

10.
D A Wilkinson  J F Nagle 《Biochemistry》1979,18(19):4244-4249
Volumes of lipid dispersions as a function of temperature have been measured for two different kinds of binary mixtures of lecithins, (1) DMPC and DSPC and (2) DMPC and DC20PC. Emphasis was placed on DMPC-rich compositions so as to resolve ambiguities regarding solid-phase immiscibility in DMPC-DSPC mixtures. Special attention has been paid to problems of equilibration in the low-temperature phase and to methods of mixing the lipids. We find that there is no solid-solid immiscibility in DMPC-DSPC mixtures, although this system is close to exhibiting such immiscibility, and that DMPC-DC20PC mixtures exhibit pronounced solid immiscibility.  相似文献   

11.
Cochleates are lipid-based delivery system that have found application in drug and gene delivery. They are precipitates, formed as a result of interaction between cations (e.g. Ca2+) and negatively charged phospholipids such as phosphatidylserine (PS). In the present study, we investigated the utility of fluorescent probe Laurdan (6-dodecanoyl-2-dimethylamino naphthalene) to monitor cochleate phase formation. Following addition of Ca2+ to Laurdan labeled lipid vesicles comprised of brain phosphatidylserine (BPS), a significant blue shift in the emission peak maximum of Laurdan was observed and the spectral features were distinct from those observed for the gel and liquid-crystalline (LC) phases. This is consistent with the formation of anhydrous cochleate cylinders that was further confirmed by electron microscopy studies. Due to dipolar relaxation, excitation and emission generalized polarization (GPEx and GPEm) indicate transition from a LC to a rigid and dehydrated (RD) cochleate phase. These spectral changes were utilized to monitor the influence of lipid composition, ionic strength and lamellarity on the formation of cochleate phase. The results indicated that the presence of phosphatidylcholine (PC) and bulk Na+ concentration influenced the formation of cochleate structures from small unilamellar vesicles (SUV) and multilamellar vesicles (MLV) composed of PS. The presence of PC and higher bulk Na+ concentration stabilized the PS vesicles against collapse and total loss of contents, intermediate molecular events in the formation of cochleate structures. From these studies, we conclude that Laurdan fluorescence is a sensitive and a rapid method to detect cochleate phase formation.  相似文献   

12.
The ultrasonic velocity at 3 MHz and the density in the nonsonicated and sonicated liposomes of dipalmitoylphosphatidylcholine have been measured in the temperature range from 0 degrees C to 55 degrees C. The results indicate that nonsonicated multilamellar vesicles undergo a weak first order transition which is analogous to the nematic-isotropic transition of liquid crystals. A sharp change in the ultrasonic velocity associated with the first order transition disappears when the multilamellar vesicles are sonicated. The bulk modulus of the lipid bilayer calculated from the ultrasonic velocity and the density of sonicated liposomes has a value of 3.0 X 10(10) dyne/cm2 at 20 degrees C, reaches a minimum value of 2.1 X 10(10) dyne/cm2 at its transition temperature and increases slightly to 2.2 X 10(10) dyne/cm2 at 50 degrees C.  相似文献   

13.
We report an extension of the recently published PMDSC method that permitted synchronous determination of heat capacity and expansibility when using slow, defined pressure formats in a DSC scan. Here we applied continuously opposing pressure changes that are fast compared to the time constants of the DSC instrument to study relaxation kinetics of phospholipids. Investigations of multilamellar vesicles of DPPC or DSPC in water revealed for both lipids relaxation times of about 30 s at the maximum of the main transition peak and about 15 s at the maximum of the pretransition. The relaxation times in the transition range are proportional to heat capacity of main- and pretransition. The molecular origin of the relaxation processes appears to stem from pressure-induced water fluxes between the interbilayer region and the bulk water phase.  相似文献   

14.
The maximum pore fluid pressures due to uniaxial compression are determined for both the vascular porosity (Haversian and Volkmann's canals) and the lacunar-canalicular porosity of live cortical bone. It is estimated that the peak pore water pressure will be 19 percent of the applied axial stress in the vascular porosity and 12 percent of the applied axial stress in the lacunar-canalicular porosity for an impulsive step loading. However, the estimated relaxation time for the vascular porosity (1.36 microseconds) is three orders of magnitude faster than that estimated for the lacunar-canalicular porosity (4.9 ms). Thus, under physiological loading, which has a stress rise time generally larger than 1 ms, pressures higher than the vascular pressure cannot be sustained in the vascular porosity due to the swift pressure relaxation in this porosity (unless the fluid drainage through the boundary is obstructed). The model also predicts a slight hydraulic stiffening of the bulk modulus due to longer draining time of the lacunar-canalicular porosity. The undrained bulk modulus is 6 percent higher than the drained bulk modulus in this case.  相似文献   

15.
The application of two-dimensional Fourier-transform electron-spin-resonance (2D-FT-ESR) to the study of lipid/gramicidin A (GA) interactions is reported. It is shown that 2D-FT-ESR spectra provide substantially enhanced spectral resolution to changes in the dynamics and ordering of the bulk lipids (as compared with cw-ESR spectra), that result from addition of GA to membrane vesicles of dipalmitoylphosphatidylcholine (DPPC) in excess water containing 16-PC as the lipid spin label. The agreement between the theory of Lee, Budil, and Freed and experimental results is very good in the liquid crystalline phase. Both the rotational and translational diffusion rates of the bulk lipid are substantially decreased by addition of GA, whereas the ordering is only slightly increased, for a 1:5 ratio of GA to lipid. The slowing effect on the diffusive rates of adding GA in the gel phase is less pronounced. It is suggested that the spectral fits in this phase would be improved with a more detailed dynamic model. No significant evidence is found in the 2D-FT-ESR spectra for a second immobilized component upon addition of GA, which is in contrast to cw-ESR. It is shown from simulations of the observed 2D-FT-ESR spectra that the additional component seen in cw-ESR spectra, and usually attributed to "immobilized" lipid, is inconsistent with its being characterized by increased ordering, according to a model proposed by Ge and Freed, but it would be consistent with the more conventional model of a significantly reduced diffusional rate. This is because the 2D-FT-ESR spectra exhibit a selectivity, favoring components with longer homogeneous relaxation times, T2. The homogeneous linewidths of the 2D-FT-ESR autopeaks appear to broaden as a function of mixing time. This apparent broadening is very likely due to the process of cooperative order director fluctuations (ODF) of the lipids in the vesicle. This real-time observation of ODF is distinct from, but appears in reasonable agreement with, NMR results. It is found that addition of GA to give the 1:5 ratio has only a small effect on the ODF, but there is a significant temperature dependence.  相似文献   

16.
Binding of colchicine to dipalmitoylphosphatidylcholine bilayer vesicles was detected by measuring the 1H-NMR selective spin-lattice relaxation rates of the low-field protons of colchicine. From the temperature dependence of the selective rates, preferential binding was observed above the temperature of transition. In the same way, binding of colchicine to red blood cells was detected and the equilibrium constant determined. Binding to the lipid matrix of red blood cells accounted only partially for the binding of colchicine to whole cells.  相似文献   

17.
B Kachar  N Fuller    R P Rand 《Biophysical journal》1986,50(5):779-788
Structural changes in phospholipid vesicles made of dioleylphosphatidylethanolamine (DOPE)/bovine phosphatidylserine (PS) (1/1, 3/1, 10/1) or of egg phosphatidylcholine (PC)/PS (3/1) and exposed to calcium chloride for various times have been observed by means of video-enhanced light microscopy and freeze-fracture electron microscopy. Calcium induces the formation of large, smooth double-bilayer diaphragms as the spherical vesicles adhere to and deform each other. No subsequent changes are seen with PC/PS vesicles. DOPE/PS vesicles respond to the resultant stress, with about equal probability, by either fusing, through diaphragm rupture, or deflating, by way of volume loss through intact bilayers, even when they contain up to 400 mM sucrose. The diaphragm areas only rarely show the structural destabilization necessary for fusion. The final state is lipid segregated into DOPE hexagonal and Ca-PS lamellar bulk phases with the exclusion of most of the vesicle contents. Results with these and pure PS vesicles studied earlier indicate that the early response of vesicles to calcium chloride is determined by the competing rates at which mechanical stress (bilayer tension and intravesicular pressure) builds up as the vesicles adhere and flatten against each other, and is relieved by vesicle fusion or by volume loss. We attribute the qualitatively different responses of these three lipid systems to their measured differences in adhesion energies and consequent rate of build-up of mechanical stress. Yield to that stress for any one of these lipid systems is not a unique sequence of morphological changes, and so it remains obscure how such a stochastic process could be used in the controlled process of cellular fusion.  相似文献   

18.
The kinetics of the main phase transition of dimyristoylphosphatidyl choline (DMPC) unilamellar vesicles were investigated in the time range from microseconds to seconds. Iodine laser-temperature jump (ILTJ) experiments showed three discrete relaxation phenomena. Time resolved cryo-electron microscopy (CEM) was applied to produce images of intermediate states typical for the relaxation times of lipid vesicles in the micro- to millisecond time window. A careful measurement of the rate of temperature decrease observed during the production of vitrified lamellae of aqueous samples on a copper grid was performed. The best conditions resulted in average rates of cooling of 3 x 10(4) K/s. By comparing the images from CEM of DMPC vesicle samples vitrified above, at, and below the phase transition temperature a structural model was designed, which explains the temperature jump relaxation times in the micro- to millisecond time range by the formation and disappearance of coexisting clusters of crystalline, intermediate, and fluid lipid areas inside the DMPC bilayers.  相似文献   

19.
Spin-lattice relaxation times (T1) were measured above the phase transition temperature on sonicated vesicles of egg- or dipalmitoyl-phosphatidylcholine containing cholesterol and/or the polyenic antibiotic, lucensomycin. T1 values of only the terminal methyl groups of the fatty acyl chains were significantly reduced by cholesterol. Lucensomycin caused, more markedly in cholesterol-containing vesicles, a selective reduction of the T1 values of the N-methyl groups. An even more conspicuous decrease, occurring only in cholesterol-containing vesicles, was observed for the transverse relaxation times (T2) of the N-methyl signals upon addition of lucensomycin. The polyene failed to remove the well-known broadening effect of cholesterol on phosphatidylcholine methylene signals. These results indicate that as lucensomycin binds to cholesterol-containing membranes, there is a detectable perturbation of the dynamic structure of the N-methyl groups with an increase in the degree of motional anisotropy. But the non-polar region of the bilayer seems not significantly perturbed by the polyene.  相似文献   

20.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions. The lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (-120 degrees C to +120 degrees C). Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids. Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 +/- 0.026 ml/g for the partial specific volume of this lipid. We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude. Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号