首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
While many approaches have been proposed to identify the signal onset in EMG recordings, there is no standardized method for performing this task. Here, we propose to use a change-point detection procedure based on singular spectrum analysis to determine the onset of EMG signals. This method is suitable for automated real-time implementation, can be applied directly to the raw signal, and does not require any prior knowledge of the EMG signal’s properties. The algorithm proposed by Moskvina and Zhigljavsky (2003) was applied to EMG segments recorded from wrist and trunk muscles. Wrist EMG data was collected from 9 Parkinson’s disease patients with and without tremor, while trunk EMG data was collected from 13 healthy able-bodied individuals. Along with the change-point detection analysis, two threshold-based onset detection methods were applied, as well as visual estimates of the EMG onset by trained practitioners. In the case of wrist EMG data without tremor, the change-point analysis showed comparable or superior frequency and quality of detection results, as compared to other automatic detection methods. In the case of wrist EMG data with tremor and trunk EMG data, performance suffered because other changes occurring in these signals caused larger changes in the detection statistic than the changes caused by the initial muscle activation, suggesting that additional criteria are needed to identify the onset from the detection statistic other than its magnitude alone. Once this issue is resolved, change-point detection should provide an effective EMG-onset detection method suitable for automated real-time implementation.  相似文献   

2.

Background

The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal.

Results

While GC content has been used to correct for this, here we show that coverage biases are tissue-specific and independent of the detection method as demonstrated by next-generation sequencing and array CGH. Moreover, we show that DNA isolation stringency affects the degree of equimolar coverage and that the observed biases coincide with chromatin characteristics like gene expression, genomic isochores, and replication timing.

Conclusion

These results indicate that chromatin organization is a main determinant for differential DNA retrieval. These findings are highly relevant for germline and somatic DNA copy number variation analyses.  相似文献   

3.
Array comparative genomic hybridization (aCGH) provides a high-resolution and high-throughput technique for screening of copy number variations (CNVs) within the entire genome. This technique, compared to the conventional CGH, significantly improves the identification of chromosomal abnormalities. However, due to the random noise inherited in the imaging and hybridization process, identifying statistically significant DNA copy number changes in aCGH data is challenging. We propose a novel approach that uses the mean and variance change point model (MVCM) to detect CNVs or breakpoints in aCGH data sets. We derive an approximate p-value for the test statistic and also give the estimate of the locus of the DNA copy number change. We carry out simulation studies to evaluate the accuracy of the estimate and the p-value formulation. These simulation results show that the approach is effective in identifying copy number changes. The approach is also tested on fibroblast cancer cell line data, breast tumor cell line data, and breast cancer cell line aCGH data sets that are publicly available. Changes that have not been identified by the circular binary segmentation (CBS) method but are biologically verified are detected by our approach on these cell lines with higher sensitivity and specificity than CBS.  相似文献   

4.
When coupled with multiple displacement amplification (MDA), microarray-based comparative genomic intensity allows detection of chromosome copy number aberrations even in single or few cells, but the actual performance of the system and their influencing factors have not been well defined. Here, using single-nucleotide polymorphism (SNP) array, we analyzed copy number profiles from DNA amplified by MDA in 1-10 cells and estimated the accuracy and spatial resolution of the analysis. Based on the concordance of SNP copy numbers for DNA with and without MDA, the accuracy of the system can be significantly enhanced by using MDA-amplified DNA as reference and also by increasing the cell numbers. Analyses under different smoothing treatments revealed a practical resolution of 2?Mb for 10 cells and 10?Mb for a single cell. When both cells with known chromosomal duplication and deletion were analyzed, this platform detected a copy number "loss" more accurately than a "gain" (P < 0.01), particularly in single-cell MDA products. Together, we demonstrated that SNP array coupled with MDA is reliable and efficient for detection of copy number aberrations in a small number of cells, and its accuracy and resolution can both be significantly enhanced with increasing the number of cells as MDA template.  相似文献   

5.
MOTIVATION: Array CGH technologies enable the simultaneous measurement of DNA copy number for thousands of sites on a genome. We developed the circular binary segmentation (CBS) algorithm to divide the genome into regions of equal copy number. The algorithm tests for change-points using a maximal t-statistic with a permutation reference distribution to obtain the corresponding P-value. The number of computations required for the maximal test statistic is O(N2), where N is the number of markers. This makes the full permutation approach computationally prohibitive for the newer arrays that contain tens of thousands markers and highlights the need for a faster algorithm. RESULTS: We present a hybrid approach to obtain the P-value of the test statistic in linear time. We also introduce a rule for stopping early when there is strong evidence for the presence of a change. We show through simulations that the hybrid approach provides a substantial gain in speed with only a negligible loss in accuracy and that the stopping rule further increases speed. We also present the analyses of array CGH data from breast cancer cell lines to show the impact of the new approaches on the analysis of real data. AVAILABILITY: An R version of the CBS algorithm has been implemented in the "DNAcopy" package of the Bioconductor project. The proposed hybrid method for the P-value is available in version 1.2.1 or higher and the stopping rule for declaring a change early is available in version 1.5.1 or higher.  相似文献   

6.
Zhang NR  Siegmund DO  Ji H  Li JZ 《Biometrika》2010,97(3):631-645
We discuss the detection of local signals that occur at the same location in multiple one-dimensional noisy sequences, with particular attention to relatively weak signals that may occur in only a fraction of the sequences. We propose simple scan and segmentation algorithms based on the sum of the chi-squared statistics for each individual sample, which is equivalent to the generalized likelihood ratio for a model where the errors in each sample are independent. The simple geometry of the statistic allows us to derive accurate analytic approximations to the significance level of such scans. The formulation of the model is motivated by the biological problem of detecting recurrent DNA copy number variants in multiple samples. We show using replicates and parent-child comparisons that pooling data across samples results in more accurate detection of copy number variants. We also apply the multisample segmentation algorithm to the analysis of a cohort of tumour samples containing complex nested and overlapping copy number aberrations, for which our method gives a sparse and intuitive cross-sample summary.  相似文献   

7.
MOTIVATION: Genomic DNA copy number alterations are characteristic of many human diseases including cancer. Various techniques and platforms have been proposed to allow researchers to partition the whole genome into segments where copy numbers change between contiguous segments, and subsequently to quantify DNA copy number alterations. In this paper, we incorporate the spatial dependence of DNA copy number data into a regression model and formalize the detection of DNA copy number alterations as a penalized least squares regression problem. In addition, we use a stationary bootstrap approach to estimate the statistical significance and false discovery rate. RESULTS: The proposed method is studied by simulations and illustrated by an application to an extensively analyzed dataset in the literature. The results show that the proposed method can correctly detect the numbers and locations of the true breakpoints while appropriately controlling the false positives. AVAILABILITY: http://bioinformatics.med.yale.edu/DNACopyNumber CONTACT: hongyu.zhao@yale.edu SUPPLEMENTARY INFORMATION: http://bioinformatics.med.yale.edu/DNACopyNumber.  相似文献   

8.
MOTIVATION: We introduce a dual multiple change-point (MCP) model for recombination detection among aligned nucleotide sequences. The dual MCP model is an extension of the model introduced previously by Suchard and co-workers. In the original single MCP model, one change-point process is used to model spatial phylogenetic variation. Here, we show that using two change-point processes, one for spatial variation of tree topologies and the other for spatial variation of substitution process parameters, increases recombination detection accuracy. Statistical analysis is done in a Bayesian framework using reversible jump Markov chain Monte Carlo sampling to approximate the joint posterior distribution of all model parameters. RESULTS: We use primate mitochondrial DNA data with simulated recombination break-points at specific locations to compare the two models. We also analyze two real HIV sequences to identify recombination break-points using the dual MCP model.  相似文献   

9.
Summary .  The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer. We develop nonparametric tests for the detection of copy number induced differential gene expression. The tests incorporate the uncertainty of the calling of genomic aberrations. The test is preceded by a "tuning algorithm" that discards certain genes to improve the overall power of the false discovery rate selection procedure. Moreover, the test statistics are "shrunken" to borrow information across neighboring genes that share the same array CGH signature. For each gene we also estimate its effect, its amount of differential expression due to copy number changes, and calculate the coefficient of determination. The method is illustrated on breast cancer data, in which it confirms previously reported findings, now with a more profound statistical underpinning.  相似文献   

10.
Wang Y  Sun G  Ji Z  Xing C  Liang Y 《PloS one》2012,7(1):e29860
In previous work, we proposed a method for detecting differential gene expression based on change-point of expression profile. This non-parametric change-point method gave promising result in both simulation study and public dataset experiment. However, the performance is still limited by the less sensitiveness to the right bound and the statistical significance of the statistics has not been fully explored. To overcome the insensitiveness to the right bound we modified the original method by adding a weight function to the D(n) statistic. Simulation study showed that the weighted change-point statistics method is significantly better than the original NPCPS in terms of ROC, false positive rate, as well as change-point estimate. The mean absolute error of the estimated change-point by weighted change-point method was 0.03, reduced by more than 50% comparing with the original 0.06, and the mean FPR was reduced by more than 55%. Experiment on microarray Dataset I resulted in 3974 differentially expressed genes out of total 5293 genes; experiment on microarray Dataset II resulted in 9983 differentially expressed genes among total 12576 genes. In summary, the method proposed here is an effective modification to the previous method especially when only a small subset of cancer samples has DGE.  相似文献   

11.
Pulakat L  Lee SH  Gavini N 《Genetica》2002,115(2):147-158
Studies utilizing several physical, biochemical and spectroscopic methods have suggested that Azotobacter vinelandii contains multiple copies (40–80) of its chromosome per cell, whereas genetic analysis indicated that these cells function like haploid cells. To further verify if A. vinelandii indeed contains 40–80 copies of its chromosome per cell, we have developed an in vivo chromosome counting technique. The basic principle of this technique is to introduce the same genetic marker on the chromosome and on an extrachromosomal element of known copy number into the bacterium. The copy number of the chromosome can be determined by comparing the intensity of the hybridization signal generated by the DNA fragment carrying the chromosomal marker with that of the extrachromosomal marker when the total DNA isolated from this strain is hybridized with a probe made of the same genetic marker DNA. To do this we used an A. vinelandii BG102 strain which carries a kanamycin resistance marker gene integrated into the nifY locus on its chromosome(s). The plasmids pRK293 and pKT230, which can replicate in A. vinelandii and carry the kanamycin resistance gene (similar to the one present on the chromosome of A. vinelandii BG102), served as the extrachromosomal elements with known copy number. Southern blotting and hybridization analysis of the total DNA, isolated from A. vinelandii BG102 containing these plasmids, with a probe made of the kanamycin resistance gene clearly indicated that the copy number of A. vinelandii chromosome is slightly lower than the copy number of the low-copy plasmid pRK293 and about 21-fold lower than the copy number of the high copy plasmid pKT230. We believe that this In vivo chromosome counting technique can be used for determination of the copy number of the chromosome in other cells with appropriate modifications in the nature of the extrachromosomal element and the genetic marker.  相似文献   

12.
Summary Genomic instability, such as copy‐number losses and gains, occurs in many genetic diseases. Recent technology developments enable researchers to measure copy numbers at tens of thousands of markers simultaneously. In this article, we propose a nonparametric approach for detecting the locations of copy‐number changes and provide a measure of significance for each change point. The proposed test is based on seeking scale‐based changes in the sequence of copy numbers, which is ordered by the marker locations along the chromosome. The method leads to a natural way to estimate the null distribution for the test of a change point and adjusted p‐values for the significance of a change point using a step‐down maxT permutation algorithm to control the family‐wise error rate. A simulation study investigates the finite sample performance of the proposed method and compares it with a more standard sequential testing method. The method is illustrated using two real data sets.  相似文献   

13.
Cell lineage of a multicellular organism has been analysed by introducing a genetic or chemical marker that is inherited from a cell to its daughter cells and is detectable even after several cell divisions. To construct a complete cell lineage, all the cells at different developmental stages need to be identified, and then the intracellular marker must be introduced to each cell. In this paper, I study a new method of estimating cell lineage based on distributions of intercellular markers observed at a single stage, which are introduced randomly at earlier stages. Assumptions are: (1) cell lineage is invariant between embryos; (2) a small number of cells are marked in each experiment; and (3) the total number of replicate experiments is sufficiently large. Then we identify the most likely cell lineage pattern (or tree topology) as the one that requires the least marker insertions to be compatible with the observed distributions of cell markers. This method is essentially the same as the principle of persimony widely used for ancestral phylogeny reconstruction in evolutionary biology. When the total number of cells is small, we can generate all the possible cell lineages and calculate the minimum number of marker insertions for each candidate, and then choose the cell lineage that requires the least marker insertions. If the number of cells is large, we can use clustering method in which a pair of cells with the highest correlation in marker labelling are merged sequentially. The efficiency of the clustering method in estimating the correct cell lineage is confirmed by computer simulations. Finally, the clustering method is applied to reconstruct the cell lineage of ascidian from experimental data.  相似文献   

14.
MOTIVATION: A promising sliding-window method for the detection of interspecific recombination in DNA sequence alignments is based on the monitoring of changes in the posterior distribution of tree topologies with a probabilistic divergence measure. However, as the number of taxa in the alignment increases or the sliding-window size decreases, the posterior distribution becomes increasingly diffuse. This diffusion blurs the probabilistic divergence signal and adversely affects the detection accuracy. The present study investigates how this shortcoming can be redeemed with a pruning method based on post-processing clustering, using the Robinson-Foulds distance as a metric in tree topology space. RESULTS: An application of the proposed scheme to three synthetic and two real-world DNA sequence alignments illustrates the amount of improvement that can be obtained with the pruning method. The study also includes a comparison with two established recombination detection methods: Recpars and the DSS (difference of sum of squares) method. AVAILABILITY: Software, data and further supplementary material are available at the following website: http://www.bioss.sari.ac.uk/~dirk/Supplements/  相似文献   

15.
In the analysis of data generated by change-point processes, one critical challenge is to determine the number of change-points. The classic Bayes information criterion (BIC) statistic does not work well here because of irregularities in the likelihood function. By asymptotic approximation of the Bayes factor, we derive a modified BIC for the model of Brownian motion with changing drift. The modified BIC is similar to the classic BIC in the sense that the first term consists of the log likelihood, but it differs in the terms that penalize for model dimension. As an example of application, this new statistic is used to analyze array-based comparative genomic hybridization (array-CGH) data. Array-CGH measures the number of chromosome copies at each genome location of a cell sample, and is useful for finding the regions of genome deletion and amplification in tumor cells. The modified BIC performs well compared to existing methods in accurately choosing the number of regions of changed copy number. Unlike existing methods, it does not rely on tuning parameters or intensive computing. Thus it is impartial and easier to understand and to use.  相似文献   

16.
The progression and clonal development of tumors often involve amplifications and deletions of genomic DNA. Estimation of allele-specific copy number, which quantifies the number of copies of each allele at each variant loci rather than the total number of chromosome copies, is an important step in the characterization of tumor genomes and the inference of their clonal history. We describe a new method, falcon, for finding somatic allele-specific copy number changes by next generation sequencing of tumors with matched normals. falcon is based on a change-point model on a bivariate mixed Binomial process, which explicitly models the copy numbers of the two chromosome haplotypes and corrects for local allele-specific coverage biases. By using the Binomial distribution rather than a normal approximation, falcon more effectively pools evidence from sites with low coverage. A modified Bayesian information criterion is used to guide model selection for determining the number of copy number events. Falcon is evaluated on in silico spike-in data and applied to the analysis of a pre-malignant colon tumor sample and late-stage colorectal adenocarcinoma from the same individual. The allele-specific copy number estimates obtained by falcon allows us to draw detailed conclusions regarding the clonal history of the individual''s colon cancer.  相似文献   

17.
This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number variation by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information criterion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, information-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this information-based approach in the analysis of simulated and experimental tethered-particle-motion data.  相似文献   

18.
肉和肉制品是人类生活的重要营养来源,但近年来肉制品中发生的掺假使假事件屡见不鲜,使得肉品的质量安全问题已经成为全世界关注的热点话题。以核酸为目标的动物源鉴定是当前普遍使用的方法。在核酸检测中,常用线粒体基因或核基因作为靶标,缺乏统一标准。以绍兴鸭和北京鸭等不同品种及生鲜组织(鸭血、鸭胸肉、鸭肝、鸭皮、鸭心和鸭腿肉)为实验材料,提取DNA后利用微滴式数字PCR开展线粒体和核DNA拷贝数的比较研究,以两者拷贝数及其比值的变异系数为判定依据。结果显示,核DNA的拷贝数在不同品种鸭组织间相对稳定,且变异系数小于线粒体DNA,表明核DNA是开展鸭肉制品掺假定量检测的最适DNA来源。鸭腿肉中线粒体/核DNA拷贝数比值的变异系数最小,表明线粒体DNA作为靶基因的鸭肉掺假比例定量检测时,鸭腿肉来源的肉制品是最佳选择。  相似文献   

19.
拷贝数变异是指基因组中发生大片段的DNA序列的拷贝数增加或者减少。根据现有的研究可知,拷贝数变异是多种人类疾病的成因,与其发生与发展机制密切相关。高通量测序技术的出现为拷贝数变异检测提供了技术支持,在人类疾病研究、临床诊疗等领域,高通量测序技术已经成为主流的拷贝数变异检测技术。虽然不断有新的基于高通量测序技术的算法和软件被人们开发出来,但是准确率仍然不理想。本文全面地综述基于高通量测序数据的拷贝数变异检测方法,包括基于reads深度的方法、基于双末端映射的方法、基于拆分read的方法、基于从头拼接的方法以及基于上述4种方法的组合方法,深入探讨了每类不同方法的原理,代表性的软件工具以及每类方法适用的数据以及优缺点等,并展望未来的发展方向。  相似文献   

20.
Copy number variation (CNV) has been reported to be associated with disease and various cancers. Hence, identifying the accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions, constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus. The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches. The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better detection power than that with integer copy number states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号