首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 4,4-disubstituted cyclohexylamine based CCR5 antagonists has been designed and synthesized. Their antiviral structure–activity relationship has been extensively explored.  相似文献   

2.
It has been observed that some antibodies, including the CD4-induced (CD4i) antibody IgG X5 and the gp41-specific antibody IgG 2F5, exhibit higher neutralizing activity in PBMC-based assays than in cell line based assays [J.M. Binley, T. Wrin, B. Korber, M.B. Zwick, M. Wang, C. Chappey, G. Stiegler, R. Kunert, S. Zolla-Pazner, H. Katinger, C.J. Petropoulos, D.R. Burton, Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies, J. Virol. 78 (2004) 13232-13252]. It has been hypothesized that the lower CCR5 concentration on the surface of the CD4 T lymphocytes compared to that on cell lines used for the neutralization assays could be a contributing factor to the observed differences in neutralizing activity. To test this hypothesis and to further elucidate the contribution of CCR5 concentration differences on antibody neutralizing activity, we used a panel of HeLa cell lines with well-defined and differential surface concentrations of CCR5 and CD4 in a pseudovirus-based assay. We observed that the CCR5 cell surface concentration but not the CD4 concentration had a significant effect on the inhibitory activity of X5 and several other CD4i antibodies including 17b and m9, as well as that of the gp41-specifc antibodies 2F5 and 4E10 but not on that of the CD4 binding site antibody (CD4bs), b12. The 50% inhibitory concentration (IC50) decreased up to two orders of magnitude in cell lines with low CCR5 concentration corresponding to that in CD4 T cells used in PBMC-based assays (about 10(3) per cell) compared to cell lines with high CCR5 concentration (about 10(4) or more). Our results suggest that the CCR5 cell surface concentration could be a contributing factor to the high neutralizing activities of some antibodies in PBMC-based-assays but other factors could also play an important role. These findings could have implications for development of vaccine immunogens based on the epitopes of X5 and other CD4i antibodies, for elucidation of the mechanisms of HIV-1 neutralization by antibodies, and for design of novel therapeutic approaches.  相似文献   

3.
Despite almost 30 years since the identification of the human immunodeficiency virus type I (HIV-1), development of effective AIDS vaccines has been hindered by the high mutability of HIV-1. The HIV-1 co-receptors CCR5 and CXCR4 are genetically stable, but viral proteins may mutate rapidly during the course of infection. CXCR4 is a seven transmembrane G protein-coupled receptor, possessing an N-terminal region (NT) and three extracellular loops (ECL1-3). Previous studies have shown that the CXCR4-ED-derived peptides inhibit the entry of HIV-1 by interacting with gp120, an HIV-1 envelope glycoprotein. In the present study, antigenicity of CXCR4-derived peptides has been investigated and the anti-HIV-1 effects of induced antisera have been assessed. It was found that CXCR4-ED-derived antigen molecules immunize mice, showing that the linear peptides have higher antigenicity than the cyclic peptides. The L1- and L2-induced antisera inhibited the HIV-1 entry significantly, while anti-N1 antibodies have no inhibitory activity. This study produced promising examples for the design of AIDS vaccines which target the human protein and can overcome mutability of HIV-1.  相似文献   

4.
Sulfated tyrosines at the amino terminus of the principal HIV-1 coreceptor CCR5 play a critical role in its ability to bind the HIV-1 envelope glycoprotein gp120 and mediate HIV-1 infection. Here, we show that a number of human antibodies directed against gp120 are tyrosine sulfated at their antigen binding sites. Like that of CCR5, antibody association with gp120 is dependent on sulfate moieties, enhanced by CD4, and inhibited by sulfated CCR5-derived peptides. Most of these antibodies preferentially associate with gp120 molecules of CCR5-utilizing (R5) isolates and neutralize primary R5 isolates more efficiently than laboratory-adapted isolates. These studies identify a distinct subset of CD4-induced HIV-1 neutralizing antibodies that closely emulate CCR5 and demonstrate that tyrosine sulfation can contribute to the potency and diversity of the human humoral response.  相似文献   

5.
Incorporation of acidic functional groups into a lead CCR5 antagonist identified from a targeted combinatorial library resulted in compounds with enhanced anti-HIV-1 activity and attenuated L-type calcium channel affinity.  相似文献   

6.
Replacement of the 5-oxopyrrolidin-3-yl fragment in the previously reported lead structure with a 1-acetylpiperidin-4-yl group led to the discovery of a novel series of potent CCR5 antagonists. Introduction of small hydrophobic substituents on the central phenyl ring increased the binding affinity, providing low to sub-nanomolar CCR5 antagonists. The selected compound 11f showed excellent antiviral activity against CCR5-using HIV-1 replication in human peripheral blood mononuclear cells (EC50=0.59 nM) and an acceptable pharmacokinetic profile in dogs.  相似文献   

7.
The CC-chemokine receptor CCR5 mediates fusion and entry of the most commonly transmitted human immunodeficiency virus type 1 (HIV-1) strains. We have isolated six new anti-CCR5 murine monoclonal antibodies (MAbs), designated PA8, PA9, PA10, PA11, PA12, and PA14. A panel of CCR5 alanine point mutants was used to map the epitopes of these MAbs and the previously described MAb 2D7 to specific amino acid residues in the N terminus and/or second extracellular loop regions of CCR5. This structural information was correlated with the MAbs' abilities to inhibit (i) HIV-1 entry, (ii) HIV-1 envelope glycoprotein-mediated membrane fusion, (iii) gp120 binding to CCR5, and (iv) CC-chemokine activity. Surprisingly, there was no correlation between the ability of a MAb to inhibit HIV-1 fusion-entry and its ability to inhibit either the binding of a gp120-soluble CD4 complex to CCR5 or CC-chemokine activity. MAbs PA9 to PA12, whose epitopes include residues in the CCR5 N terminus, strongly inhibited gp120 binding but only moderately inhibited HIV-1 fusion and entry and had no effect on RANTES-induced calcium mobilization. MAbs PA14 and 2D7, the most potent inhibitors of HIV-1 entry and fusion, were less effective at inhibiting gp120 binding and were variably potent at inhibiting RANTES-induced signaling. With respect to inhibiting HIV-1 entry and fusion, PA12 but not PA14 was potently synergistic when used in combination with 2D7, RANTES, and CD4-immunoglobulin G2, which inhibits HIV-1 attachment. The data support a model wherein HIV-1 entry occurs in three stages: receptor (CD4) binding, coreceptor (CCR5) binding, and coreceptor-mediated membrane fusion. The antibodies described will be useful for further dissecting these events.  相似文献   

8.
Screening of the Merck sample collection for compounds with CCR5 receptor binding afforded (2S)-2-(3,4-dichlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[spiro(2,3-dihydrobenzthiophene-3,4'-piperidin-1'-yl)]butane S-oxide (4) as a potent lead structure having an IC50 binding affinity of 35 nM. Herein, we describe the discovery of this lead structure and our initial structure activity relationship studies directed toward the requirement for and optimization of the 1-amino fragment.  相似文献   

9.
The tropism of human immunodeficiency virus type 1 for chemokine receptors plays an important role in the transmission of AIDS. Although CXCR4-tropic virus is more cytopathic for T cells, CCR5-tropic strains are transmitted more frequently in humans for reasons that are not understood. Phenotypically immature myeloid dendritic cells (mDCs) are preferentially infected by CCR5-tropic virus, in contrast to mature mDCs, which are not susceptible to infection but instead internalize virus into a protected intracellular compartment and enhance the infection of T cells. Here, we define a mechanism to explain preferential transmission of CCR5-tropic viruses based on their interaction with mDCs and sensitivity to neutralizing antibodies. Infected immature mDCs differentiated normally and were found to enhance CCR5-tropic but not CXCR4-tropic virus infection of T cells even in the continuous presence of neutralizing antibodies. Infectious synapses also formed normally in the presence of such antibodies. Infection of immature mDCs by CCR5-tropic virus can therefore establish a pool of infected cells that can efficiently transfer virus at the same time that they protect virus from antibody neutralization. This property of DCs may enhance infection, contribute to immune evasion, and could provide a selective advantage for CCR5-tropic virus transmission.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) impacts multiple lineages of hematopoietic cells, including lymphocytes and macrophages, either by direct infection or indirectly by perturbations of cell networks, leading to generalized immune deficiency. We designed a study to discover, in primary human macrophages, sentinel genetic targets that are impacted during replication over the course of 7 days by a CCR5-using virus. Expression of mRNA and proteins in virus- or mock-treated macrophages from multiple donors was evaluated. Hierarchical agglomerative cluster analysis grouped into distinct temporal expression patterns >900 known human genes that were induced or repressed at least fourfold by virus. Expression of more than one-third of the genes was induced rapidly by day 2 of infection, while other genes were induced at intermediate (day 4) or late (day 7) time points. More than 200 genes were expressed exclusively in either virus- or mock-treated macrophage cultures, independent of the donor, providing an unequivocal basis to distinguish an effect by virus. HIV-1 altered levels of mRNA and/or protein for diverse cellular programs in macrophages, including multiple genes that can contribute to a transition in the cell cycle from G(1) to G(2)/M, in contrast to expression in mock-treated macrophages of genes that maintain G(0)/G(1). Virus treatment activated mediators of cell cycling, including PP2A, which is impacted by Vpr, as well as GADD45 and BRCA1, potentially novel targets for HIV-1. The results identify interrelated programs conducive to optimal HIV-1 replication and expression of genes that can contribute to macrophage dysfunction.  相似文献   

11.
HIV-1 has maximized its utilization of syndecans. It uses them as in cis receptors to infect macrophages and as in trans receptors to infect T-lymphocytes. In this study, we investigated at a molecular level the mechanisms that control HIV-1-syndecan interactions. We found that a single conserved arginine (Arg-298) in the V3 region of gp120 governs HIV-1 binding to syndecans. We found that an amine group on the side chain of this residue is necessary for syndecan utilization by HIV-1. Furthermore, we showed that HIV-1 binds syndecans via a 6-O sulfation, demonstrating that this binding is not the result of random interactions between basic residues and negative charges, but the result of specific contacts between gp120 and a well defined sulfation in syndecans. Surprisingly, we found that Arg-298, which mediates HIV-1 binding to syndecans, also mediates HIV-1 binding to CCR5. We postulated that HIV-1 recognizes similar motifs on syndecans and CCR5. Supporting this hypothesis, we obtained several lines of evidence that suggest that the 6-O sulfation recognized by HIV-1 on syndecans mimics the sulfated tyrosines recognized by HIV-1 in the N terminus of CCR5. Our finding that CCR5 and syndecans are exploited by HIV-1 via a single determinant echoes the mechanisms by which chemokines utilize these two disparate receptors and suggests that the gp120/chemokine mimicry may represent a common strategy in microbial pathogenesis.  相似文献   

12.
CCR5 and CXCR4 usage has been studied extensively with a variety of clade B human immunodeficiency virus type 1 (HIV-1) isolates. The determinants of CCR5 coreceptor function are remarkably consistent, with a region critical for fusion and entry located in the CCR5 amino-terminal domain (Nt). In particular, negatively charged amino acids and sulfated tyrosines in the Nt are essential for gp120 binding to CCR5. The same types of residues are important for CXCR4-mediated viral fusion and entry, but they are dispersed throughout the extracellular domains of CXCR4, and their usage is isolate dependent. Here, we report on the determinants of CCR5 and CXCR4 coreceptor function for a panel of non-clade B isolates that are responsible for the majority of new HIV-1 infections worldwide. Consistent with clade B isolates, CXCR4 usage remains isolate dependent and is determined by the overall content of negatively charged and tyrosine residues. Residues in the Nt of CCR5 that are important for fusion and entry of clade B isolates are also important for the entry of all non-clade B HIV-1 isolates that we tested. Surprisingly, we found that in contrast to clade B isolates, a cluster of residues in the second extracellular loop of CCR5 significantly affects fusion and entry of all non-clade B isolates tested. This points to a different mechanism of CCR5 usage by these viruses and may have important implications for the development of HIV-1 inhibitors that target CCR5 coreceptor function.  相似文献   

13.
The chemokine receptor CCR5 is the major fusion coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). To define the structures of CCR5 that can support envelope (Env)-mediated membrane fusion, we analyzed the activity of homologs, chimeras, and mutants of human CCR5 in a sensitive gene reporter cell-cell fusion assay. Simian, but not murine, homologs of CCR5 were fully active as HIV-1 fusion coreceptors. Chimeras between CCR5 and divergent chemokine receptors demonstrated the existence of two distinct regions of CCR5 that could be utilized for Env-mediated fusion, the amino-terminal domain and the extracellular loops. Dual-tropic Env proteins were particularly sensitive to alterations in the CCR5 amino-terminal domain, suggesting that this domain may play a pivotal role in the evolution of coreceptor usage in vivo. We identified individual residues in both functional regions, Asp-11, Lys-197, and Asp-276, that contribute to coreceptor function. Deletion of a highly conserved cytoplasmic motif rendered CCR5 incapable of signaling but did not abrogate its ability to function as a coreceptor, implying the independence of fusion and G-protein-mediated chemokine receptor signaling. Finally, we developed a novel monoclonal antibody to CCR5 to assist in future studies of CCR5 expression.  相似文献   

14.
In addition to the primary cell surface receptor CD4, CCR5 or another coreceptor is necessary for infections by human immunodeficiency virus type 1 (HIV-1), yet the mechanisms of coreceptor function and their stoichiometries in the infection pathway remain substantially unknown. To address these issues, we studied the effects of CCR5 concentrations on HIV-1 infections using wild-type CCR5 and two attenuated mutant CCR5s, one with the mutation Y14N at a critical tyrosine sulfation site in the amino terminus and one with the mutation G163R in extracellular loop 2. The Y14N mutation converted a YYT sequence at positions 14 to 16 to an NYT consensus site for N-linked glycosylation, and the mutant protein was shown to be glycosylated at that position. The relationships between HIV-1 infectivity values and CCR5 concentrations took the form of sigmoidal (S-shaped) curves, which were dramatically altered in different ways by these mutations. Both mutations shifted the curves by factors of approximately 30- to 150-fold along the CCR5 concentration axis, consistent with evidence that they reduce affinities of virus for the coreceptor. In addition, the Y14N mutation specifically reduced the maximum efficiencies of infection that could be obtained at saturating CCR5 concentrations. The sigmoidal curves for all R5 HIV-1 isolates were quantitatively consistent with a simple mathematical model, implying that CCR5s reversibly associate with cell surface HIV-1 in a concentration-dependent manner, that approximately four to six CCR5s assemble around the virus to form a complex needed for infection, and that both mutations inhibit assembly of this complex but only the Y14N mutation also significantly reduces its ability to successfully mediate HIV-1 infections. Although several alternative models would be compatible with our data, a common feature of these alternatives is the cooperation of multiple CCR5s in the HIV-1 infection pathway. This cooperativity will need to be considered in future studies to address in detail the mechanism of CCR5-mediated HIV-1 membrane fusion.  相似文献   

15.
Most human immunodeficiency virus type 1 (HIV-1) viruses in the brain use CCR5 as the principal coreceptor for entry into a cell. However, additional phenotypic characteristics are necessary for HIV-1 neurotropism. Furthermore, neurotropic strains are not necessarily neurovirulent. To better understand the determinants of HIV-1 neurovirulence, we isolated viruses from brain tissue samples from three AIDS patients with dementia and HIV-1 encephalitis and analyzed their ability to induce syncytia in monocyte-derived macrophages (MDM) and neuronal apoptosis in primary brain cultures. Two R5X4 viruses (MACS1-br and MACS1-spln) were highly fusogenic in MDM and induced neuronal apoptosis. The R5 viruses UK1-br and MACS2-br are both neurotropic. However, only UK1-br induced high levels of fusion in MDM and neuronal apoptosis. Full-length Env clones from UK1-br required lower CCR5 and CD4 levels than Env clones from MACS2-br to function efficiently in cell-to-cell fusion and single-round infection assays. UK1-br Envs also had a greater affinity for CCR5 than MACS2-br Envs in binding assays. Relatively high levels of UK1-br and MACS2-br Envs bound to CCR5 in the absence of soluble CD4. However, these Envs could not mediate CD4-independent infection, and MACS2-br Envs were unable to mediate fusion or infection in cells expressing low levels of CD4. The UK1-br virus was more resistant than MACS2-br to inhibition by the CCR5-targeted inhibitors TAK-779 and Sch-C. UK1-br was more sensitive than MACS2-br to neutralization by monoclonal antibodies (2F5 and immunoglobulin G1b12 [IgG1b12]) and CD4-IgG2. These results predict the presence of HIV-1 variants with increased CCR5 affinity and reduced dependence on CCR5 and CD4 in the brains of some AIDS patients with central nervous system disease and suggest that R5 variants with increased CCR5 affinity may represent a pathogenic viral phenotype contributing to the neurodegenerative manifestations of AIDS.  相似文献   

16.
In order to develop orally active CCR5 antagonists, 1-propyl- or 1-isobutyl-1-benzazepine derivatives containing a sulfoxide moiety have been designed, synthesized, and evaluated for their biological activities. Sulfoxide compounds containing a 2-pyridyl group were first investigated, which led to discovering that the presence of a methylene group between the sulfoxide moiety and 2-pyridyl group was necessary for increased inhibitory activity in a binding assay. After further chemical modification, it was found that replacement of the pyridyl group with an imidazolyl or 1,2,4-triazolyl group enhanced activity in the binding assay and that S-sulfoxide compounds were more active than R-isomers. Particularly, compounds (S)-4r, (S)-4s, and (S)-4w exhibited highly potent CCR5 antagonistic activities (IC50=1.9, 1.7, 1.6 nM, respectively) and inhibitory effects (IC50=1.0, 2.8, 7.7 nM, respectively) in the HIV-1 envelope mediated membrane fusion assay, together with good pharmacokinetic properties in rats. In addition, we established the synthesis of (S)-4r and (S)-4w by asymmetric oxidation with titanium-(S)-(-)-1,1'-bi-2-naphthol complex.  相似文献   

17.
Exposure to HIV does not necessarily result in infection. Because primary HIV infection is associated with CCR5-tropic HIV variants (R5), CCR5-specific Abs in the sera of HIV-seronegative, HIV-exposed individuals (ESN) might be associated with protection against infection. We analyzed sera from ESN, their HIV-infected sexual partners (HIV+), and healthy controls (USN) searching for CCR5-specific Abs, studying whether incubation of PBMC with sera could prevent macrophage inflammatory protein 1 beta (Mip1 beta) (natural ligand of CCR5) binding to CCR5. Results showed that Mip1 beta binding to CCR5 was not modified by sera of either 40 HIV+ or 45 USN but was greatly reduced by sera of 6/48 ESN. Binding inhibition was due to Abs reactive with CCR5. The CCR5-specific Abs neutralized the infectivity of primary HIV isolates obtained from the corresponding HIV+ partners and of R5-primary HIV strains, but not that of CXCR4-tropic or amphitropic HIV strains. Immunoadsorption on CCR5-transfected, but not on CXCR4-transfected, cells removed CCR5-specific and virus-neutralizing Abs. Epitope mapping on purified CCR5-specific Abs showed that these Abs recognize a conformational epitope in the first cysteine loop of CCR5 (aa 89-102). Affinity-purified anti-CCR5-peptide neutralized the infectivity of R5 strains of HIV-1. Anti-CCR5 Abs inhibited Mip1beta-induced chemotaxis of PBMC from healthy donors. PBMC from two ESN (with anti-CCR5 Abs) were CCR5-negative and could not be stimulated by Mip1beta in chemotaxis assays. These results contribute to clarifying the phenomenon of immunologic resistance to HIV and may have implications for the development of a protective vaccine.  相似文献   

18.
We identified a novel spirodiketopiperazine (SDP) derivative, AK602/ONO4128/GW873140, which specifically blocked the binding of macrophage inflammatory protein 1alpha (MIP-1alpha) to CCR5 with a high affinity (K(d) of approximately 3 nM), potently blocked human immunodeficiency virus type 1 (HIV-1) gp120/CCR5 binding and exerted potent activity against a wide spectrum of laboratory and primary R5 HIV-1 isolates, including multidrug-resistant HIV-1 (HIV-1(MDR)) (50% inhibitory concentration values of 0.1 to 0.6 nM) in vitro. AK602 competitively blocked the binding to CCR5 expressed on Chinese hamster ovary cells of two monoclonal antibodies, 45523, directed against multidomain epitopes of CCR5, and 45531, specific against the C-terminal half of the second extracellular loop (ECL2B) of CCR5. AK602, despite its much greater anti-HIV-1 activity than other previously published CCR5 inhibitors, including TAK-779 and SCH-C, preserved RANTES (regulated on activation normal T-cell expressed and secreted) and MIP-1beta binding to CCR5(+) cells and their functions, including CC-chemokine-induced chemotaxis and CCR5 internalization, while TAK-779 and SCH-C fully blocked the CC-chemokine/CCR5 interactions. Pharmacokinetic studies revealed favorable oral bioavailability in rodents. These data warrant further development of AK602 as a potential therapeutic for HIV-1 infection.  相似文献   

19.
Aminooxypentane (AOP)-RANTES efficiently and specifically blocks entry of non-syncytium-inducing (NSI), CCR5-tropic (R5) human immunodeficiency virus type 1 (HIV-1) into host cells. Inhibition appears to be mediated by increased intracellular retention of the CCR5 coreceptor- AOP-RANTES complex and/or competitive binding of AOP-RANTES with NSI R5 HIV-1 isolates for CCR5. Although AOP-RANTES and other beta-chemokine analogs are potent inhibitors, the extreme heterogeneity of the HIV-1 envelope glycoproteins (gp120 and gp41) and variable coreceptor usage may affect the susceptibility of variant HIV-1 strains to these drugs. Using the same peripheral blood mononuclear cells (PBMC) with all isolates, we observed a significant variation in AOP-RANTES inhibition of 13 primary NSI R5 isolates; 50% inhibitory concentrations (IC(50)) ranged from 0.04 nM with HIV-1(A-92RW009) to 1.3 nM with HIV-1(B-BaL). Experiments performed on the same isolate (HIV-1(B-BaL)) with PBMC from different donors revealed no isolate-specific variation in AOP-RANTES IC(50) values but did show a considerable difference in virus replication efficiency. Exclusive entry via the CCR5 coreceptor by these NSI R5 isolates suggests that variable inhibition by AOP-RANTES is not due to alternative coreceptor usage but rather differential CCR5 binding. Analysis of the envelope V3 loop sequence linked a threonine or arginine at position 319 (numbering based on the HXB2 genome) with AOP-RANTES resistance. With the exception of one isolate, A319 was associated with increased sensitivity to AOP-RANTES inhibition. Distribution of AOP-RANTES IC(50) values with these isolates has promoted ongoing screens for new CCR5 agonists that show broad inhibition of HIV-1 variants.  相似文献   

20.
Small-molecule CCR5 inhibitors such as vicriviroc (VVC) and maraviroc (MVC) are allosteric modulators that impair HIV-1 entry by stabilizing a CCR5 conformation that the virus recognizes inefficiently. Viruses resistant to these compounds are able to bind the inhibitor-CCR5 complex while also interacting with the free coreceptor. CCR5 also interacts intracellularly with G proteins, as part of its signal transduction functions, and this process alters its conformation. Here we investigated whether the action of VVC against inhibitor-sensitive and -resistant viruses is affected by whether or not CCR5 is coupled to G proteins such as Gαi. Treating CD4+ T cells with pertussis toxin to uncouple the Gαi subunit from CCR5 increased the potency of VVC against the sensitive viruses and revealed that VVC-resistant viruses use the inhibitor-bound form of Gαi-coupled CCR5 more efficiently than they use uncoupled CCR5. Supportive evidence was obtained by expressing a signaling-deficient CCR5 mutant with an impaired ability to bind to G proteins, as well as two constitutively active mutants that activate G proteins in the absence of external stimuli. The implication of these various studies is that the association of intracellular domains of CCR5 with the signaling machinery affects the conformation of the external and transmembrane domains and how they interact with small-molecule inhibitors of HIV-1 entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号