首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
RNA polymerases of cyanobacteria contain a novel core subunit, gamma, which is absent from the RNA polymerases of other eubacteria. The genes encoding the three largest subunits of RNA polymerase, including gamma, have been isolated from the cyanobacterium Anabaena sp. strain PCC 7120. The genes are linked in the order rpoB, rpoC1, rpoC2 and encode the beta, gamma, and beta' subunits, respectively. These genes are analogous to the rpoBC operon of Escherichia coli, but the functions of rpoC have been split in Anabaena between two genes, rpoC1 and rpoC2. The DNA sequence of the rpoC1 gene was determined and shows that the gamma subunit corresponds to the amino-terminal half of the E. coli beta' subunit. The gamma protein contains several conserved domains found in the largest subunits of all bacterial and eukaryotic RNA polymerases, including a potential zinc finger motif. The spliced rpoC1 gene from spinach chloroplast DNA was expressed in E. coli and shown to encode a protein immunologically related to Anabaena gamma. The similarities in the RNA polymerase gene products and gene organizations between cyanobacteria and chloroplasts support the cyanobacterial origin of chloroplasts and a divergent evolutionary pathway among eubacteria.  相似文献   

2.
3.
The rpoC1 ts mutation affecting the RNA polymerase beta' subunit accelerates synthesis of RNA polymerase beta beta' subunits at 42 degrees C, while the surplus amount of subunits degrades in an hour's time. In a Ts strain with two RNA polymerase mutations, rpoC1 and rpoB251, we obtained a ts+ reversion designated opr24 which slows down degradation of surplus beta beta' subunits. The slowing down of degradation and the resulting accumulation of beta beta' subunits does not affect the kinetics of beta beta' subunit synthesis after the transfer to 42 degrees C. The effects of the opr24 are allele non-specific. The mutation also slows down degradation of beta' subunit and the amber fragment of beta subunit in the strain with subunit amber mutation rpoB22. Besides, the opr24 mutation reduces proteolysis of anomalous proteins containing canavanine. The opr24 mutation has been mapped between 17 and 21 minutes on the Escherichia coli map.  相似文献   

4.
R F Troxler  F Zhang  J Hu    L Bogorad 《Plant physiology》1994,104(2):753-759
Plastid genes are transcribed by DNA-dependent RNA polymerase(s), which have been incompletely characterized and have been examined in a limited number of species. Plastid genomes contain rpoA, rpoB, rpoC1, and rpoC2 coding for alpha, beta, beta', and beta" RNA polymerase subunits that are homologous to the alpha, beta, and beta' subunits that constitute the core moiety of RNA polymerase in bacteria. However, genes with homology to sigma subunits in bacteria have not been found in plastid genomes. An antibody directed against the principal sigma subunit of RNA polymerase from the cyanobacterium Anabaena sp. PCC 7120 was used to probe western blots of purified chloroplast RNA polymerase from maize, rice, Chlamydomonas reinhardtii, and Cyanidium caldarium. Chloroplast RNA polymerase from maize and rice contained an immunoreactive 64-kD protein. Chloroplast RNA polymerase from C. reinhardtii contained immunoreactive 100- and 82-kD proteins, and chloroplast RNA polymerase from C. caldarium contained an immunoreactive 32-kD protein. The elution profile of enzyme activity of both algal chloroplast RNA polymerases coeluted from DEAE with the respective immunoreactive proteins, indicating that they are components of the enzyme. These results provide immunological evidence for sigma-like factors in chloroplast RNA polymerase in higher plants and algae.  相似文献   

5.
6.
7.
8.
9.
Sequence analysis of a 12,400 base-pair region of the spinach chloroplast genome indicates the presence of three genes encoding subunits of the chloroplast RNA polymerase. These genes are analogous to the rpoBC operon of Escherichia coli, with some significant differences. The first gene, termed rpoB, encodes a 121,000 Mr homologue of the bacterial beta subunit. The second and third genes, termed rpoC1 and rpoC2, encode 78,000 and 154,000 Mr proteins homologous to the N and C-terminal portions, respectively, of the bacterial beta' subunit. RNA mapping analysis indicates that the three genes are cotranscribed, and that a single intron occurs in the rpoC1 gene. No splicing occurs within the rpoC2 gene or between rpoC1 and rpoC2. Furthermore, the data indicate the possibility of an alternative splice acceptor site for the rpoC1 intron that would give rise to a 71,000 Mr gene product. Thus, with the inclusion of the alpha subunit encoded by rpoA at a separate locus, the chloroplast genome is predicted to encode four subunits (respectively called alpha, beta, beta', beta") equivalent to the three subunits of the core enzyme of the E. coli RNA polymerase.  相似文献   

10.
11.
12.
An isogenic pair of relA+ and relA strains of Escherichia coli B/r with a mutation in the RNA polymerase subunit gene rpoB (Rifr) was isolated in which the relationship between guanosine tetraphosphate (ppGpp) concentration and stable RNA (rRNA, tRNA) gene activity was altered. The RNA polymerase in the rpoB strains was found to be about 20-fold more sensitive to ppGpp with respect to its stable RNA promoter activity than was the wild-type enzyme. The existence of such mutants is consistent with the idea that ppGpp interacts with the RNA polymerase enzyme and thereby alters its promoter selectivity, i.e., reduces its affinity for the stable RNA promoters. Under most conditions, the rpoB mutants had a reduced rate of growth and about a 10-fold-reduced intracellular concentration of ppGpp compared with the rpoB wild-type strains. The reduction of the level of ppGpp in the rpoB mutants during exponential growth was presumably a reflection of an indirect effect of the rpoB mutation on the control of relA-independent ppGpp metabolism.  相似文献   

13.
14.
15.
16.
17.
利用选择性培养基筛选大肠杆菌自然突变菌株,经噬菌体P1转导和蛋白质互补试验,发现一株突变体(LCH001)的突变基因发生在编码RNA聚合酶β′亚基的rpoC基因上,经DNA序列分析,发现突变位点发生在第3406个碱基上,由G变成了T,导致编码的氨基酸由甘氨酸(GGT)变成半胱氨酸(TGT)。体内转录试验表明该突变RNA聚合酶转录严谨型启动子控制基因的活性显著降低,其β-半乳糖苷酶的活性是野生型菌株的18%,而转录非严谨型启动子控制基因的活性显著提高,其β-半乳糖苷酶的活性约是野生型菌株的5倍。研究结果对探讨RNA聚合酶结构与功能的关系以及RNA聚合酶在细菌严谨反应过程中的作用具有重要意义。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号