首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use fluorescein as the energy donor and rhodamine as the acceptor to measure the efficiency of fluorescence resonance energy transfer (FRET) in a set of hybridized DNA constructs. The two fluorophores are covalently attached via linkers to two separate oligonucleotides with fluorescein at the 3' end of one oligonucleotide and rhodamine at the 5' end or in the middle of another nucleotide. For the FRET analysis both fluorophore-labeled oligonucleotides are hybridized to adjacent sections of the same DNA template to form a three-component duplex with a one base gap between the two labeled oligonucleotides. A similar configuration is implemented for a quantitative real-time polymerase chain reaction (PCR) with LightCycler technology, where a 1-5 base separation between donor and acceptor is recommended to optimize energy transfer efficiencies. Our constructs cover donor-acceptor separations from 2 to 17 base pairs (approximately 10-70 A). The results show that, when the two fluorophores are located at close distances (less than 8 base separation), FRET efficiencies are above 80%, although there may be ground-state interactions between fluorophores when the separation is under about 6 bases. Modeling calculations are used to predict the structure of these three-component constructs. The duplex mostly retains a normal double helical structure, although slight bending may occur near the unpaired base in the DNA template. Stable and reproducible energy transfer is also observed over the distance range investigated here in real-time thermal cycling. The study identifies important parameters that determine FRET response in applications such as real-time PCR.  相似文献   

2.
The distance between the hapten combining site and the light-heavy interchain disulfide bond in the Fab fragment of rabbit immunoglobulin G has been determined by measuring the efficiency of energy transfer between chromophores specifically attached at these sites on the molecule. The donor chromophore, Dns-Lys4, was non-covalently bound in the combining site of the Fab fragment of high-affinity anti-Dns antibody. The acceptor chromophore, fluorescein, was covalently attached by disulfide interchange of racemic DiFlCys with specific sulfhydryls generated by reduction. The presence of acceptor decreased the donor fluorescence lifetime from 23.6 nanoseconds to 21.6 nanoseconds. From the transfer efficiency of 8.4%, an average separation distance of 76 ± 10 Å was calculated. However, a statistical analysis of the molar concentrations of donor and acceptor on Fab fragments showed that approximately equal numbers of Fab probably contained donor but no acceptor on the one hand, and both donor and acceptor on the other hand. The presence of the former subpopulation would result in an average measured efficiency of energy transfer that would be too low. Treatment of the decay data by a double-exponential analysis which took account of these two populations of Fab fragments, led to a transfer efficiency of 20% and a correspondingly shorter separation distance of 64 ± 10 Å. The latter value is to be preferred. From the results presented here, and those reported previously on the location of the combining site at the tip of the Fab fragment and of the interheavy chain disulfide bond (Bunting &; Cathou, 1973), a general summary of the dimensions of rabbit immunoglobulin G Fab is given.  相似文献   

3.
Microscopy-based fluorescence resonance energy transfer (FRET) experiments measure donor and acceptor intensities by isolating these signals with a series of optical elements. Because this filtering discards portions of the spectrum, the observed FRET efficiency is dependent on the set of filters in use. Similarly, observed FRET efficiency is also affected by differences in fluorophore quantum yield. Recovering the absolute FRET efficiency requires normalization for these effects to account for differences between the donor and acceptor fluorophores in their quantum yield and detection efficiency. Without this correction, FRET is consistent across multiple experiments only if the photophysical and instrument properties remain unchanged. Here we present what is, to our knowledge, the first systematic study of methods to recover the true FRET efficiency using DNA rulers with known fluorophore separations. We varied optical elements to purposefully alter observed FRET and examined protein samples to achieve quantum yields distinct from those in the DNA samples. Correction for calculated instrument transmission reduced FRET deviations, which can facilitate comparison of results from different instruments. Empirical normalization was more effective but required significant effort. Normalization based on single-molecule photobleaching was the most effective depending on how it is applied. Surprisingly, per-molecule γ-normalization reduced the peak width in the DNA FRET distribution because anomalous γ-values correspond to FRET outliers. Thus, molecule-to-molecule variation in gamma has an unrecognized effect on the FRET distribution that must be considered to extract information on sample dynamics from the distribution width.  相似文献   

4.
K G Rice  R G Wu  L Brand  Y C Lee 《Biochemistry》1991,30(27):6646-6655
Three geometric isomers of a single triantennary glycopeptide, each containing two fluorophores attached to terminal positions in the molecule, were used to probe distance and flexibility of the oligosaccharide in solution. A dansyl group (energy acceptor) was attached to the C6 of Gal at either position 6', 6, or 8, and a naphthyl-2-acetyl group (energy donor) was coupled to the N terminus of the Ala-Asn peptide. (formula; see text) Resonance energy-transfer measurements revealed an average distance of approximately 22, 18, and 17 A between the donor and the acceptor attached to either the 6, 8, or 6' Gal residue, respectively. The lifetime of the donor's emission was nearly a single-exponential decay of 27 ns (96%), whereas the decay of the donor with proximally attached acceptor was fit by nonlinear least-squares analysis to a multiexponential for each glycopeptide probe. Fitting with a Lorentzian function revealed spatially distinct donor/acceptor distances presumably arising from glycopeptide branch flexibility. The results suggest that the acceptor located at Gal 8 is the most rigid relative to the donor with a single population of distances centered at 18.4 A. In contrast, the acceptor attached to either Gal 6' or 6 displayed two populations of different distances from the donor. The Gal 6 isomer contained a major population with average donor/acceptor separation distance of 21.7 A and a minor population with average separation distance of 9.7 A. Similarly, the Gal 6' isomer showed a major population with donor/acceptor separation distance of 18.3 A and a minor population with separation distance of 11.7 A. These data support the earlier conclusions that the Man alpha(1----6)Man linkage found in the core pentasaccharide of all branched N-linked oligosaccharides is flexible. In addition, the data suggest that the branch containing Gal 6 is also flexible in the triantennary glycopeptide.  相似文献   

5.
Three self-assembled photonic dyads comprising a zinc porphyrin donor and a free base acceptor have been studied by time-resolved fluorescence spectroscopy. The driving force of the assembly is the site selective binding of an imidazole connected to a free base porphyrin. Three spacers have been incorporated between the imidazole connector and the free base porphyrin, providing three different distances separating the donor and the acceptor. The high efficiencies and the rates of energy transfer in the set of dyads is consistent with the Forster energy transfer mechanism. Evidence for Forster back transfer has been obtained, and its efficiency and rate have been quantitatively evaluated for the first time.  相似文献   

6.
A fluorescent phospholipid derivative, the fluoresceinthiocarbamyl adduct of a natural phosphatidylethanolamine, has been synthesized and incorporated into sonicated single-bilayer vesicles of egg lecithin and dipalmitoyllecithin. The surface location of this probe has been confirmed by using extrinsic fluorescence quenching studies together with steady-state emission anisotropy measurements. Electronic excitation energy transfer between 1,6-diphenyl-1,3,5-hexatriene incorporated within the hydrophobic core of the bilayer and the novel derivative has been investigated to estimate the depth within the bilayer at which the former is located. Efficiencies have been measured for two different phospholipids, egg lecithin and dipalmitoyllecithin, in the latter case both above and below the phospholipid phase transition, with and without added cholesterol. The observed dependence of the transfer efficiency on the acceptor concentration was compared with that calculated according to F?rster theory applied to random two-dimensional distributions of donor and acceptor molecules in parallel planes for various interplanar separations, taking into account orientational effects. The F?rster R0 of about 45 A for this donor-acceptor pair is particularly well suited to such studies since it is of the order of the width of the bilayer. The experiments showed that energy-transfer spectroscopy can provide useful quantitative information as to the transverse location of diphenylhexatriene in homogeneous phospholipid bilayers and may also reflect lateral partitioning of donor or of both donor and acceptor into different phases in systems exhibiting phase separations.  相似文献   

7.
J V Mersol  H Wang  A Gafni    D G Steel 《Biophysical journal》1992,61(6):1647-1655
Dipole-dipole energy transfer between suitable donor and acceptor chromophores is an important luminescence quenching mechanism and has been shown to be useful for distance determination at the molecular level. In the rapid diffusion limit, where the excited-state lifetime of the donor is long enough to allow the donor and acceptor to diffuse many times their average separation before deexcitation, it is usually assumed that the relative dipolar orientation is completely averaged due to rotational Brownian motion. Under this simplifying assumption, analytical expressions have been derived earlier for the energy transfer rate between donor and acceptor characterized by different geometries. Most such expressions, however, are only approximate because complete angular averaging is permitted only in a geometry that possesses spherical symmetry surrounding each chromophore. In this paper analytical expressions that correctly account for incomplete angle averaging due to steric hindrance are presented for several geometries. Each of the equations reveals a dependence of the energy transfer rate on chromophore orientation. It is shown that correctly accounting for this effect can lead to improvements in estimates of the distance of closest approach from measured quenching rates based on energy transfer experiments.  相似文献   

8.
We studied the fluorescence resonance energy transfer (FRET) efficiency of different donor-acceptor labeled model DNA systems in aqueous solution from ensemble measurements and at the single molecule level. The donor dyes: tetramethylrhodamine (TMR); rhodamine 6G (R6G); and a carbocyanine dye (Cy3) were covalently attached to the 5'-end of a 40-mer model oligonucleotide. The acceptor dyes, a carbocyanine dye (Cy5), and a rhodamine derivative (JA133) were attached at modified thymidine bases in the complementary DNA strand with donor-acceptor distances of 5, 15, 25 and 35 DNA-bases, respectively. Anisotropy measurements demonstrate that none of the dyes can be observed as a free rotor; especially in the 5-bp constructs the dyes exhibit relatively high anisotropy values. Nevertheless, the dyes change their conformation with respect to the oligonucleotide on a slower time scale in the millisecond range. This results in a dynamic inhomogeneous distribution of donor/acceptor (D/A) distances and orientations. FRET efficiencies have been calculated from donor and acceptor fluorescence intensity as well as from time-resolved fluorescence measurements of the donor fluorescence decay. Dependent on the D/A pair and distance, additional strong fluorescence quenching of the donor is observed, which simulates lower FRET efficiencies at short distances and higher efficiencies at longer distances. On the other hand, spFRET measurements revealed subpopulations that exhibit the expected FRET efficiency, even at short D/A distances. In addition, the measured acceptor fluorescence intensities and lifetimes also partly show fluorescence quenching effects independent of the excitation wavelength, i.e. either directly excited or via FRET. These effects strongly depend on the D/A distance and the dyes used, respectively. The obtained data demonstrate that besides dimerization at short D/A distances, an electron transfer process between the acceptor Cy5 and rhodamine donors has to be taken into account. To explain deviations from FRET theory even at larger D/A distances, we suggest that the pi-stack of the DNA double helix mediates electron transfer from the donor to the acceptor, even over distances as long as 35 base pairs. Our data show that FRET experiments at the single molecule level are rather suited to resolve fluorescent subpopulations in heterogeneous mixture, information about strongly quenched subpopulations gets lost.  相似文献   

9.
Analytical solutions are presented of the average rate of the Förster energy transfer for several processes affecting intrinsic membrane proteins within a phospholipid bilayer. The physical phenomena considered here are lateral phase separation of the protein, i.e., formation of eutectic mixtures, changes in the aggregation state of the protein and non-random distribution of protein molecules. It is shown that the average rate of energy transfer among protein and phospholipid molecules labelled with donor and acceptor molecules, respectively, allows differentiation between them and also that the average rate of energy transfer can be used to quantitate these phenomena.  相似文献   

10.
D Amir  E Haas 《Biochemistry》1987,26(8):2162-2175
A series of four bovine pancreatic trypsin inhibitor (BPTI) derivatives, site specifically labeled by (2-methoxy-1-naphthyl)methyl (MNA) at the N-terminal amino group and by [7-(dimethylamino)-coumarin-4-yl]acetyl (DA-coum) at one of the four epsilon-amino groups, was prepared. The four derivatives, N alpha-MNA-Arg1-N epsilon-DA-coum-Lysn-BPTI [(1-n)BPTI] (n = 15, 26, 41, and 46), were purified by affinity chromatography and high-performance liquid chromatography (HPLC). The homogeneity of each derivative and its site of labeling were characterized by HPLC tryptic peptide mapping. Nonradiative energy transfer from MNA (donor) to DA-coum (acceptor) was measured by monitoring donor emission and acceptor excitation spectra. Transfer efficiencies between 45% and 85% were observed. The fluorescence decay of MNA in MNA-BPTI, a derivative labeled by a donor without an acceptor, is monoexponential, with a lifetime of 6.8 +/- 0.15 ns. The decay kinetics of MNA fluorescence measured for derivatives labeled both by donor and acceptor showed a small deviation from monoexponential decay with shorter average lifetimes. Analysis of the experimental decay curves yielded the detailed intramolecular distance distribution functions for each pair of labeled sites. The averages of the calculated distance distribution functions are close to the values expected from the known structure of BPTI in the crystalline state. The derivatives thus obtained are suitable for investigation of conformational transitions of the labeled protein and for monitoring localized changes such as those involved in the folding or unfolding transitions.  相似文献   

11.
A detailed theory has been derived to evaluate the efficiency of nonradiative transfer of electronic excitation energy between nonassociated membrane-bound chromophores. Two different approaches are presented and shown to lead to identical numerical results. In the first of these the efficiency of transfer is computed from the decay with time of the donor excited state. In the second approach, the efficiency is calculated directly, demonstrating that to a high degree of accuracy the array of acceptors can be represented as consisting of a single nearest acceptor plus a continuum of secondary acceptors. A general expression is derived for the dipole-dipole orientation factor as a function of the position of an acceptor. It is shown that, by invoking the range of orientations that must be present at the very least in a particular case, the expected values of transfer efficiency may be limited to a relatively narrow band of uncertainty about those predicted for total randomization. In the limit of total randomization, the theory reduces to functions of but two dimensionless parameters: an effective number of acceptors and a normalized distance of closest approach, a parameter which in turn is a function of an excluded surface area and the depth in the membrane of a donor relative to that of an acceptor. Finally, data analysis procedures are presented whereby one can determine the surface density of acceptors for a known geometry or, alternatively, determine the distance of closest approach for known surface densities.  相似文献   

12.
Lanthanide-based resonance energy transfer (LRET) is an established method for measuring or detecting proximity between a luminescent lanthanide (energy donor) and an organic fluorophore (energy acceptor). Because resonance energy transfer is a distance-dependent phenomenon that increases in efficiency to the 6th power of the distance between the donor and the acceptor, assay systems are often designed to minimize donor-acceptor distances. However, the authors show that because of the R(6) relationship between transfer efficiency and sensitized emission lifetime, energy transfer can be difficult to measure in a time-gated manner when the donor-acceptor distance is small relative to the F?rster radius. In such systems, the advantages inherent in time-resolved, ratiometric measurements are lost but can be regained by designing the system such that the average donor-acceptor distance is increased.  相似文献   

13.

Background

Förster resonance energy transfer (FRET) is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (kD→A) can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates.

Methodology/Principal Findings

The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean) and either two or three FRET acceptors (Venus). FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates.

Conclusions/Significance

We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is incorrect.  相似文献   

14.
Fluorescence energy transfer is potentially a useful technique for obtaining structural and dynamic information on duplex and branched DNA molecules suitably labeled with donor and acceptor dyes. We have assessed the accuracy and limitations of FET measurements in nucleic acids with respect to the localization of the dyes and the flexibility of the dye-DNA linkages. A nine base-pair duplex oligonucleotide was synthesized with donor and acceptor dyes linked at the opposing 5' termini by alkyl chains. A careful analysis of the fluorescence decay of the donor revealed that the donor-acceptor distance in this molecule was not well defined, but was described by a rather broad distribution. The mean donor-acceptor distance and the distribution of distances have been recovered from the donor decay. Orientational effects on energy transfer have been included in the analysis. The implications of these findings for FET measurements in nucleic acids are considered.  相似文献   

15.
Relationship of donor and acceptor fluorescence anisotropies as well as efficiency of fluorescence resonance energy transfer (FRET) has been investigated in a confocal microscope in the context of FRET systems comprised of donor and acceptor-labeled MHCI and MHCII receptors on the surface of Kit-225 K6 human T-cells. The measurements have been carried out in a 2-laser, 5-signal platform where the total donor fluorescence intensity and 2 acceptor fluorescence intensities with their anisotropies – one at the donor's excitation wavelength, the other at the acceptor's excitation wavelength – have been detected. This configuration enabled the determination of FRET efficiency and correlating it with the two acceptor fluorescence anisotropies as a kind of calibration. Estimations for the FRET-enhanced donor fluorescence anisotropy, the directly excited acceptor fluorescence anisotropy, and the fluorescence anisotropy of sensitized emission have been obtained. Procedures for determining FRET by measuring only the total donor intensity and the acceptor intensity and its anisotropy, or two acceptor intensities and their anisotropies have been elaborated, the errors of which have been estimated based on the fluorescence anisotropy values obtained in the calibration with the method of flow cytometric energy transfer (FCET).The combined detection of the donor and acceptor fluorescence anisotropies enabled also the determination of the lower and upper limits of the orientation factor for FRET (κ2). An increase in range for κ2 with increasing FRET efficiency has been observed, with average κ2 values different from the dynamic random average of 2/3. These observations call for the need of κ2 determination in proximity measurements, where the donor and acceptor orientations are not predictable.An increasing range of κ2 with increasing intermolecular proximity of the MHCI and MHCII receptors has been observed. This indicates that molecular flexibility in the clusters of the MHCI and MHCII receptors reduces with increasing cluster density, i.e. a “fluidity gradient” exists in the clusters. More specifically, the local density dependent flexibility can also be taken as a direct proof for that the association of these receptors is non-random, but mediated by some type of physical interaction, a finding as a benefit of FRET detection by polarization spectroscopy.Two new quantities – the quenched donor fluorescence anisotropy and a fluorescence anisotropy analogue, the “dissymmetry index” of the polarized FRET efficiency components – have also been introduced for the characterization of the orientational dynamics of the excited state during FRET.  相似文献   

16.
We present a detailed theoretical analysis of the Förster energy transfer process when a pair of molecules (donor and acceptor) is located nearby a cluster of two metallic nanospheres (dimer). We consider the case in which plasmonic resonances are within the overlap between the donor emission and acceptor absorption spectra, as well as the case that excludes such resonances from the aforementioned spectral overlap. Moreover, we explore the dependence of the Förster energy transfer rate on different dimer configurations (size and separation of nanospheres) and several dipole orientations of molecules. The dimer perturbs strongly the Förster energy transfer rate when plasmons are excited, donor dipole is oriented along the longitudinal axis of the dimer, and the radii of nanospheres and the sphere-gap distance are on the order of a few nanometers. In case of plasmonic excitation, the Förster energy transfer rate is degraded as the sphere-gap distance and size of the nanoparticles increase due to the dephasing of electronic motion arising from ohmic losses of metal. Also, we study the Förster efficiency influenced by the dimer, finding that the high efficiency region (delimited by the Förster radius curve) is reduced as a consequence of significant enhancement of the direct donor decay rate. Our study could impact applications that involve Förster energy transfer.  相似文献   

17.
Chen Y  Lehrer SS 《Biochemistry》2004,43(36):11491-11499
To obtain information about the interaction of tropomyosin (Tm) with actin associated with the regulatory states of the muscle thin filament, we used luminescence resonance energy transfer (LRET) between Tb(3+) as a donor and rhodamine as an acceptor. A novel Tb(3+) chelator, S-(2-nitro-5-thiobenzoate)cysteaminyl-DTPA-Cs124, was synthesized, which specifically labels Cys groups in proteins. With the Tb chelate as the donor and tetramethylrhodamine-5-maleimide as the acceptor, both bound to specific Cys groups of Tm, we obtained 67 A as the distance between Tm's across the actin filament, a much shorter value than that obtained from structural studies (72-86 A). The difference appears to be due to submillisecond motion associated with Tm flexibility, which brings the probes closer during the millisecond lifetime of the donor. Ca(2+) did not change the energy transfer with the reconstituted thin filament, but myosin subfragment 1 decreased the transfer, consistent with either a 5-6 A increase in distance or, more likely, a decrease in flexibility.  相似文献   

18.
We employed microscopic intensity-based fluorescence resonance energy transfer (FRET) images with correction by donor and acceptor concentrations to obtain unbiased maps of spatial distribution of the AT- and GC-rich DNA regions in nuclei. FRET images of 137 bovine aortic endothelial cells stained by the AT-specific donor Hoechst 33258 and the GC-specific acceptor 7-aminoactinomycin D were acquired and corrected for the donor and acceptor concentrations by the Gordon's method based on the three fluorescence filter sets. The corrected FRET images were quantitatively analyzed by texture analysis to correlate the spatial distribution of the AT- and GC-rich DNA regions with different phases of the cell cycle. Both visual observation and quantitative texture analysis revealed an increased number and size of the low FRET efficiency centers for cells in the G(2)/M-phases, compared to the G(1)-phase cells. We have detected cell cycle-dependent changes of the spatial organization and separation of the AT- and GC-rich DNA regions. Using the corrected FRET (cFRET) technique, we were able to detect early DNA separation stages in late interphase nuclei.  相似文献   

19.
J Connor  A J Schroit 《Biochemistry》1987,26(16):5099-5105
This report describes the application of a resonance energy transfer assay to determine the transbilayer distribution of 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labeled lipid analogues. The validity of this technique was established by determining the relationship between the distance of separation of lissamine rhodamine B labeled phosphatidylethanolamine (N-Rho-PE) acceptor lipid and NBD-labeled donor lipid and energy transfer efficiency. By determination of the distance between probes at 50% transfer efficiency (R0), the distance between fluorophores distributed symmetrically (outer leaflet label) and asymmetrically in artificially generated vesicles was determined. Calculation of the average distance between probes revealed a 14-A difference between NBD-lipid and N-Rho-PE localized in the same leaflet and in opposing leaflets, respectively. Application of this technique to the study of the transbilayer distribution of NBD-lipid in human red blood cells (RBC) showed that exogenously supplied NBD-phosphatidylserine (NBD-PS) was selectively transported to the inner leaflet, whereas NBD-phosphatidylcholine remained in the outer leaflet. In contrast, pretreatment of the RBC with diamide (a SH cross-linking reagent) blocked the transport of NBD-PS. The absence or presence of NBD-PS in the outer leaflet was independently verified by employing "back-exchange", trinitrobenzenesulfonic acid derivatization, and decarboxylation with PS decarboxylase experiments. These control experiments yielded results which confirmed the lipid distributions determined by the resonance energy transfer assay.  相似文献   

20.
Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photoinsensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号