首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells preinfected with fowl plague virus followed by treatment with actinomycin D are a suitable system for studying early protein synthesis in cells infected with Semliki forest virus. One and one-half hours after superinfection, three new nonstructural proteins (NVP) were detected: NVP 145, NVP, 112, and NVP 65. They appeared in parallel with a low incorporation of mannose at the beginning of the infectious cycle. Behavior on chasing suggested a precursor relationship of NVP 112 to the envelope glycoproteins. Two kinds of NVP 65 are described, both of which are varieties of NVP 68 with an incomplete mannose content. One type, detected early after infection, was converted into NVP 68 by supplementary glycosylation. The second, late type was stable. It contains fucose and resembles the NVP 65 observed after impairment of glycosylation. The mechanism of NVP 68 glycosylation is discussed. The presence of the complete carbohydrate moiety is crucial for the cleavage of NVP 68 into the envelope proteins E2 and E3 and, thus, for virus maturation. Only the complete form of NVP 68 was precipitated by envelope-specific antisera. A large production of NVP 78 is a further feature of the early events in infected cells. It is not related to the structural proteins.  相似文献   

2.
Thirty temperature-sensitive mutants of encephalomyocarditis virus have been isolated and partially characterized. Fifteen of these mutants are phenotypically RNA+ thirteen are RNA-, and two are RNA +/-. Six RNA + mutants, one RNA- mutants, and one RNA +/- mutant have virions which are more thermosensitive at 56 degree C than the wild-type virions. Hela cells infected at the nonpermissive temperature with any of the RNA+ mutants produced neither infective nor noninfective viral particles. The cleavage of the precursor polypeptides in cells infected with 11 of the RNA+ mutants was defective at the nonpermissive temperature. This defect in cleavage occurred only in those precursor polypeptides leading to capsid proteins.  相似文献   

3.
The structural proteins of wild-type Sindbis virus were shown to arise by posttranslational cleavage of larger precursors. The proteins synthesized in wildtype infection were compared with those specified by ts-11, a temperature-sensitive mutant unable to synthesize viral RNA at the restrictive temperature. Abnormally large, virus-specific proteins were found in the mutant-infected cells after the shift from 28 C to 41.5 C. These large polypeptides were presumably precursors which were cleaved too rapidly to be detected in the wild-type infection. The largest had a molecular weight of 133,000 and was the same size as the apparent precursor detected during infection with a group of Sindbis mutants which could not form nucleocapsids at the nonpermissive temperature. The stability of ts-11-specific RNA synthesis, after shift from permissive to restrictive conditions, differed from that in cells infected by wild-type virus, indicating that the virus had a genetic lesion in an enzyme involved in RNA synthesis. This mutation might have caused the precursor to fold incorrectly so that it could not be cleaved. The possibility cannot be excluded, however, that a second lesion in an uncharacterized viral function, such as a protease, was the cause of the accumulation of the precursors.  相似文献   

4.
Maturation Defects in Temperature-sensitive Mutants of Sindbis Virus   总被引:18,自引:16,他引:2       下载免费PDF全文
Temperature-sensitive mutants of Sindbis virus, which synthesize viral ribonucleic acid (RNA) but not mature virus at the nonpermissible temperature, were selected for the study of viral maturation. Of these, three mutants which complement each other genetically were used. Two major proteins, the nucleocapsid and membrane proteins, located, respectively, in the viral nucleoid and membrane, were found in intact virions. In cells infected with wild-type Sindbis virus, four distinct types of viral RNA with sedimentation coefficients of 40S, 26S, 20S, and 15S were detected in constant distribution. The 20S RNA was ribonuclease-resistant, whereas the other types were ribonuclease-sensitive. The 40S RNA, identical to that obtained from the virion, was found associated with nucleocapsid protein as a subviral particle, which was assumed to be the nucleoid. Viral materials from cells infected with the mutants under nonpermissive conditions were compared with those from cells infected with wild-type virus, in terms of (i) the distribution of the different types of RNA, (ii) the association of infectious viral RNA into subviral particles, and (iii) the ability of infected cells to hemadsorb goose erythrocytes. According to these criteria, each of the three mutants demonstrated different maturation defects. Defective nucleocapsid proteins and membrane proteins may each account for one of the above mutants. The thrid mutant may have defects in a minor structural protein or possibly a maturation protein which is involved in the assembly of Sindbis virus.  相似文献   

5.
Non-histone proteins and long-range organization of HeLa interphase DNA   总被引:22,自引:0,他引:22  
We have studied the association of the Sindbis virus glycoproteins in mature virions and infected cells. The glycoproteins were cross-linked with bifunctional amino-reactive reagents (11 Å cross-linking distance), some of which could be subsequently cleaved by reduction. Using monospecific rabbit antisera against each viral envelope glycoprotein it was found that >90% of the cross-linked glycoprotein dimers from intact virions or virions solubilized with Triton X100 prior to cross-linking were heterodimers of E1 and E2. The pattern of cross-linked glycoproteins from intact virions as well as infected cells suggested that three E1-E2 dimers may be associated to form a hexameric subunit. Cross-linking of pulselabeled infected monolayers showed that PE2 was cross-linked to E1 less efficiently than was E2, suggesting that if PE2 and E1 are associated as a complex in infected cells then their conformation with respect to reactive amino groups is distinct from that of the mature virion glycoproteins. ts mutants of Sindbis virus in the complementation groups corresponding to E1 and PE2 fail to cleave PE2 at the non-permissive temperature (40 °C). In monolayers infected with these mutants or a heat-resistant variant of Sindbis virus, the glycoprotein precursors synthesized at the elevated temperature were readily cross-linked into large aggregates, indicating a temperature-sensitive tendency for the proteins to aggregate.  相似文献   

6.
  相似文献   

7.
8.
A cell-free system has been constructed to study the mechanism by which a single messenger RNA directs the synthesis of proteins destined for two different cellular locations. The Semliki Forest virus (SFV) 26 S mRNA codes for the viral capsid protein (C protein) and the membrane proteins p62 and E1. The three virus proteins are read in this order from the messenger RNA using one initiation site. The C protein is left on the cytoplasmic side and the p62 and the El proteins are inserted into the endoplasmic reticulum membrane. Translation of 26 S mRNA in a HeLa cell-free system in the presence of microsomes from dog pancreas reproduced the segregation, and proteolytic processing and glycosylation observed in infected cells. The signal for membrane binding was in the amino-terminal end of p62. The results indicate that the membrane proteins become inserted in the nascent state. The cleavage between p62 and El was coupled to membrane insertion. If the membranes were added after a period corresponding to the synthesis of about 100 amino acids of the p62 protein, segregation, glycosylation and cleavage between p62 and E1 failed to occur.  相似文献   

9.
The synthesis and organization of Sindbis virus structural proteins was investigated in BHK cells infected with wild-type virus (SVHR) or temperature-sensitive (ts) mutants defective in maturation. Cells infected with ts-23 or ts-20 (complementation groups D and E) were similar in the polypeptides synthesized at the nonpermissive temperature and differed from SVHR-infected cells in that the envelope protein E2 was not cleaved from the PE2 precursor. Data from experiments utilizing pulse-chase procedures or protein synthesis inhibitors indicated that although infectious virions were released from cells infected with these mutants in shift-down experiments, the particles were produced almost exclusively from proteins synthesized after the return to permissive temperature. This suggests that a stable complex may be formed among the structural proteins before budding. A membrane fraction isolated from cells infected with either ts mutants or SVHR contained the PE2, E1, and C polypeptides, whereas E2 was restricted to fractions obtained from SVHR-infected cells. Although equivalent amounts of virus-specific protein were synthesized in cells infected with either mutant and the cells contained qualitatively the same proteins in the isolated membranes, cells infected with ts-23 did not have virus-specific proteins exposed on their surface that could be detected by ferritin-conjugated antibody-labeling procedures or lactoperoxidase-mediated iodination. In contrast, ts-20-infected cells had significant amounts of viral protein, mainly E1, that could be detected on the plasma membrane by either procedure. Iodine was incorporated into E1 and E2 on the surface of SVHR-infected cells in the same relative amounts as seen in iodinated virions. PE2, however, although present in membranes, could not be iodinated on the surface of infected cells under any of the conditions used in this study. We also monitored the relative efficiency with which these viral proteins could be removed from intact cells by dilute solutions of nonionic detergents. The results indicated that E2 was most efficiently removed, followed by E1. PE2 (the precursor to E2) and C remained associated with the cell and could be subsequently isolated in the membrane fraction.  相似文献   

10.
11.
A potential substrate of p60v-src in Rous sarcoma virus-transformed cells was found to be a 130-kilodalton (kDa) glycoprotein which binds to lectin-Sepharose and can be immunoprecipitated by an anti-phosphotyrosine antibody. This glycoprotein was shown to be distinct from the fibronectin receptor and a cellular protein phosphorylated in p60v-src immune complexes. The protein was a transmembrane protein localized in the plasma membrane and resistant to extraction with Triton X-100. The 130-kDa protein was also highly phosphorylated in cells transformed by Fujinami sarcoma virus or Y73 but not in cells infected with Rous sarcoma virus mutants that encode p60v-src lacking myristoylated N termini. Phosphorylation of this glycoprotein was temperature dependent in cells infected with temperature-sensitive mutants. The good correlation between its phosphorylation and morphological transformation, together with its relative abundance among phosphorylated proteins and its subcellular localization, suggests that phosphorylation of the 130-kDa glycoprotein is one of the primary events important for cell transformation by p60v-src and related oncogene products.  相似文献   

12.
BHK-21 cells infected with temperature-sensitive mutants of herpes simplex virus type 1 strain KOS representing 16 complementation groups were tested for susceptibility to complement-mediated immune cytolysis at permissive (34 degrees C) and nonpermissive (39 degrees C) temperatures. Only cells infected by mutants in complementation group E were resistant to immune cytolysis in a temperature-sensitive manner compared with wild-type infections. The expression of group E mutant cell surface antigens during infections at 34 and 39 degrees C was characterized by a combination of cell surface radioiodination, specific immunoprecipitation, and gel electrophoretic analysis of immunoprecipitates. Resistance to immune lysis at 39 degrees C correlated with the absence of viral antigens exposed at the cell surface. Intrinsic radiolabeling of group E mutant infections with [14C]glucosamine revealed that normal glycoproteins were produced at 34 degrees C but none were synthesized at 39 degrees C. The effect of 2-deoxy-D-glucose on glycosylation of group E mutants at 39 degrees C suggested that the viral glycoprotein precursors were not synthesized. The complementation group E mutants failed to complement herpes simplex virus type 1 mutants isolated by other workers. These included the group B mutants of strain KOS, the temperature-sensitive group D mutants of strain 17, and the LB2 mutant of strain HFEM. These mutants should be considered members of herpes simplex virus type 1 complementation group 1.2, in keeping with the new herpes simplex virus type 1 nomenclature.  相似文献   

13.
Analysis of [35S]methionine-labeled tryptic peptides of the large proteins induced by temperature-sensitive mutants of Semliki Forest virus was carried out. The 130,000-molecular-weight protein induced by ts-2 and ts-3 mutants contained the peptides of capsid protein and of both major envelope proteins E1 and E2. The ts-3-induced protein with molecular weight of 97,000 contained peptides of the capsid and envelope protein E2 but not those of E1. Two proteins with molecular weights of 78,000 and 86,000 from ts-1-infected cells did not contain the peptides of the virion structural proteins. They are evidently expressions of the nonstructural part of the 42S RNA genome of Semliki Forest virus.  相似文献   

14.
15.
Chicken embryo fibroblasts infected with an RNA- temperature-sensitive mutant (ts24) of Sindbis virus accumulated a large-molecular-weight protein (p200) when cells were shifted from the permissive to nonpermissive temperature. Appearance of p200 was accompanied by a decrease in the synthesis of viral structural proteins, but [35S]methionine tryptic peptides from p200 were different from those derived from a 140,000-molecular-weight polypeptide that contains the amino acid sequences of viral structural proteins. Among three other RNA- ts mutants that were tested for p200 formation, only one (ts21) produced this protein. The accumulation of p200 in ts24- and ts21-infected cells could be correlated with a shift in the formation of 42S and 26S viral RNA that led to an increase in the relative amounts of 42S RNA. These data indicate that p200 is translated from the nonstructural genes of the virion 42S RNA and further suggest that this RNA does not function effectively in vivo as an mRNA for the Sindbis virus structural proteins.  相似文献   

16.
Rat embryo cells were infected with adenovirus type 5 mutants that code for only one of the two early E1A proteins, mutants with defects in one of the two conserved regions common to the two proteins, or mutants with defects in the 46-amino-acid region unique to the 289-amino-acid E1A protein. Cells were scored for altered cell cycle progression, disruption of actin stress fibers, and activation of E2A expression. Mutants lacking either E1A protein were able to cause all of these effects; but mutants lacking a 243-amino-acid protein had less effect, and mutants lacking a 289-amino-acid protein much less effect, than wild-type virus. A mutation in any of the three conserved regions caused a defect in each E1A effect. To investigate the reported function of conserved domain 2 in mitosis, we monitored by fluorescence-activated cell sorter the reduction in Hoechst 33342 fluorescence that occurs when cells divide after undergoing a round of DNA replication in 5-bromodeoxyuridine. A smaller percentage of adenovirus-infected cells than mock-infected cells divided within a given period after completing a round of DNA replication. Viruses with mutations in conserved domain 2 were defective for initiation of cellular DNA replication, as were all other E1A mutants we have examined, but had no specific defect in cell division compared with wild-type virus. Thus, although there may be some specialization of function between the two E1A proteins and between their conserved domains, it was not apparent in the aspects of E1A function and the mutants that we examined.  相似文献   

17.
Hyperimmune antisera to purified Sindbis (SIN) or Semliki Forest (SF) virus were used to identify alphavirus-specific and cross-reactive proteins in virions and infected cells. The hyperimmune sera participated in homologous and cross-cytolysis of alphavirus-infected cells, and the use of monospecific antisera to SIN structural proteins suggested that E1 and E2 could serve as target proteins in cytolysis. Proteins from purified virions or infected cells were extracted with Nonidet P-40, denatured by procedures for sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose solid supports, and reacted with hyperimmune sera and 125I-labeled protein A (immunoblotting on denatured proteins). Alternatively, native proteins extracted by mild Nonidet P-40 treatment were precipitated with hyperimmune sera before denaturation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After immunoblotting, homologous antiserum reacted with the virus structural proteins E1, E2, capsid extracted from purified virions, and the counterparts of these proteins extracted from infected cells. In addition, PE2 and a 92,000-molecular-weight protein from infected cells reacted with homologous antiserum. These proteins were also immunoprecipitated with homologous antiserum. After immunoblotting, the Sindbis capsid protein was shown to be cross-reactive whether derived from purified virions or from infected cells; no cross-reactivity was observed with PE2 or E2 from either source, and the E1 glycoprotein was shown to be cross-reactive only when obtained from virions. However, the E1 glycoprotein could be cross-immunoprecipitated from infected cells (as well as from disrupted virions), and, in addition, capsid and a 92,000-molecular-weight protein were cross-immunoprecipitated from infected cells. These results suggest that a native conformation of the cell-associated E1 glycoproteins may be required for immunological cross-reactivity (immune precipitation), whereas virion but not cell-associated E1 retains immunological cross-reactivity after denaturation (immunoblot technique). The findings extend our previously published evidence which suggested that alphavirus maturation is accompanied by a change in immunological cross-reactivity with respect to E1.  相似文献   

18.
Gustin KE  Sarnow P 《Journal of virology》2002,76(17):8787-8796
Nucleocytoplasmic trafficking pathways and the status of nuclear pore complex (NPC) components were examined in cells infected with rhinovirus type 14. A variety of shuttling and nonshuttling nuclear proteins, using multiple nuclear import pathways, accumulated in the cytoplasm of cells infected with rhinovirus. An in vitro nuclear import assay with semipermeabilized infected cells confirmed that nuclear import was inhibited and that docking of nuclear import receptor-cargo complexes at the cytoplasmic face of the NPC was prevented in rhinovirus-infected cells. The relocation of cellular proteins and inhibition of nuclear import correlated with the degradation of two NPC components, Nup153 and p62. The degradation of Nup153 and p62 was not due to induction of apoptosis, because p62 was not proteolyzed in apoptotic HeLa cells, and Nup153 was cleaved to produce a 130-kDa cleavage product that was not observed in cells infected with poliovirus or rhinovirus. The finding that both poliovirus and rhinovirus cause inhibition of nuclear import and degradation of NPC components suggests that this may be a common feature of the replicative cycle of picornaviruses. Inhibition of nuclear import is predicted to result in the cytoplasmic accumulation of a large number of nuclear proteins that could have functions in viral translation, RNA synthesis, packaging, or assembly. Additionally, inhibition of nuclear import also presents a novel strategy whereby cytoplasmic RNA viruses can evade host immune defenses by preventing signal transduction into the nucleus.  相似文献   

19.
For many viruses, primary infection has been shown to prevent superinfection by a homologous second virus. In this study, we investigated superinfection exclusion of bovine viral diarrhea virus (BVDV), a positive-sense RNA pestivirus. Cells acutely infected with BVDV were protected from superinfection by homologous BVDV but not with heterologous vesicular stomatitis virus. Superinfection exclusion was established within 30 to 60 min but was lost upon passaging of persistently infected cells. Superinfecting BVDV failed to deliver a translatable genome into acutely infected cells, indicating a block in viral entry. Deletion of structural protein E2 from primary infecting BVDV abolished this exclusion. Bypassing the entry block by RNA transfection revealed a second block at the level of replication but not translation. This exclusion did not require structural protein expression and was inversely correlated with the level of primary BVDV RNA replication. These findings suggest dual mechanisms of pestivirus superinfection exclusion, one at the level of viral entry that requires viral glycoprotein E2 and a second at the level of viral RNA replication.  相似文献   

20.
Cytolytic T-lymphocyte (CTL) activity specific for respiratory syncytial (RS) virus was investigated after intranasal infection of mice with RS virus, after intraperitoneal infection of mice with a recombinant vaccinia virus expressing the F glycoprotein, and after intramuscular vaccination of mice with Formalin-inactivated RS virus or a chimeric glycoprotein, FG, expressed from a recombinant baculovirus. Spleen cell cultures from mice previously infected with live RS virus or the F-protein recombinant vaccinia virus had significant CTL activity after one cycle of in vitro restimulation with RS virus, and lytic activity was derived from a major histocompatibility complex-restricted, Lyt2.2+ (CD8+) subset. CTL activity was not restimulated in spleen cells from mice that received either the Formalin-inactivated RS virus or the purified glycoprotein, FG. The protein target structures for recognition by murine CD8+ CTL were identified by using target cells infected with recombinant vaccinia viruses that individually express seven structural proteins of RS virus. Quantitation of cytolytic activity against cells expressing each target structure suggested that 22K was the major target protein for CD8+ CTL, equivalent to recognition of cells infected with RS virus, followed by intermediate recognition of F or N, slight recognition of P, and no recognition of G, SH, or M. Repeated stimulation of murine CTL with RS virus resulted in outgrowth of CD4+ CTL which, over time, became the exclusive subset in culture. Murine CD4+ CTL were highly cytolytic for RS virus-infected cells, but they did not recognize target cells infected with any of the recombinant vaccinia viruses expressing the seven RS virus structural proteins. Finally, the CTL response in peripheral blood mononuclear cells of adult human volunteers was investigated. The detection of significant levels of RS virus-specific cytolytic activity in these cells was dependent on at least two restimulations with RS virus in vitro, and cytolytic activity was derived primarily from the CD4+ subset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号