首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pK values of the 3 histidine residues in the common alpha subunits of bovine and equine glycoprotein hormones have been determined from titration curves generated from their C-2 proton nuclear magnetic resonances at different pH values. Assignment of resonances to specific histidines is based on a comparison between the two species, which have 1 histidine residue in different positions in their sequences, and of the bovine alpha subunit after removal of its histidine 94 by treatment with carboxypeptidases. In both species, those histidines closest to the COOH terminus titrate with near normal pK values of 6.2. The histidine residue found in the bovine subunit at position 87 titrates with an approximate pK value of 5.4. Histidine 83, adjacent to an oligosaccharide moiety in both species, does not titrate over a pH range of 4.0 to 8.0 and thus appears inaccessible to solvent. Similarly, in bovine lutropin-beta, 1 of 3 histidine residues does not titrate between pH 5.0 and 7.0. In the intact hormone, 2 "nontitratable" histidine residues are found. Changes in the characteristics of the signals, however, preclude unambiguous assignment of these two resonances to the nontitrating histidines in the isolated subunits. It appears that changes in the environment of at least some histidines occur when the subunits combine to yield intact hormone.  相似文献   

2.
Titration curves of the histidine residues in lutropin, thyrotropin, follitropin and chorionic gonadotropin have been assigned using imidazole C-2 proton nuclear magnetic resonance spectra and their estimated pK values determined. Spectra of reassociated hormone preparations, in which one or the other of their two subunits (alpha or beta) have had their accessible histidines exchanged with deuterium, permitted assignment of C-2 resonance to specific residues. Similar titration curves were found for residues which are conserved from one hormone to another. However, these conserved histidines do not have identical pK values, indicating that differences in the conformation or microenvironment around these residues occur in these hormones. Changes in some pK values also occur as a function of subunit association. The most dramatic change seen in all cases is the exposure to solvent of histidine alpha-83; in isolated alpha subunits this residue is unavailable for titration over a wide pH range. This change appears to be a general consequence of the association of the two subunits in any of these hormones. The data show that all histidines in the intact hormones are accessible to the environment, including those proposed to be in domains involved in subunit-subunit interaction.  相似文献   

3.
One of the four titrating histidine ring C-2 proton resonances of bovine pancreatic ribonuclease has been assigned to histidine residue 12. This was accomplished by a direct comparison of the rate of tritium incorporation into position C-2 of histidine 12 of S-peptide (residues 1 to 20) derived from ribonuclease S, with the rates of deuterium exchange of the four histidine C-2 proton resonances of ribonuclease S under the same experimental conditions. The same assignment was obtained by a comparison of the NMR titration curves of ribonuclease S, the noncovalent complex of S-peptide and S-protein (residues 21 to 124) with the results for the recombined complex in which position C-2 of histidine 12 was fully deuterated. The second active site histidine resonance was assigned to histidine residue 119 by consideration of the NMR titration results fro carboxymethylated histidines and 1-carboxymethylhistidine 119 ribonuclease. This assignment is a reversal of that originally reported, and has important implications for the interpretation of NMR titration data of ribonuclease.  相似文献   

4.
In order to obtain a better understanding of the neutral-to-base (N-B) transition of human serum albumin, we performed acid/base titration experiments and 500-MHz 1H NMR experiments on albumin and on a large peptic (residues 1-387) and large tryptic (residues 198-585) fragment of albumin. The acid/base titration experiments revealed that Ca2+ ions induce a downward pK shift of several histidine residues of the peptic (P46) fragment and of albumin. By contrast, Ca2+ has very little influence on the pK of histidine residues of the tryptic (T45) fragment. In albumin, the pH-dependent His C-2 proton resonances, observed with 1H NMR experiments, have been allotted the numbers 1-17. It proved possible to locate these resonances in the P46 and the T45 fragments. A correspondence was found between the number of histidines detected by the acid/base titration and by the 1H NMR experiments. The results of the experiments lead us to conclude that in domain 1 at least the histidines corresponding to the His C-2 proton resonances 1-5 play a dominant role in the N-B transition. The Cu2+-binding histidine residue 3 (resonance 8) of the albumin molecule is not involved in the N-B transition. In addition, we were able to assign His C-2 proton resonance 9 to histidine 464 of the albumin molecule. The role of the N-B transition in the transport and cellular uptake mechanisms of endogenous and exogenous compounds is discussed.  相似文献   

5.
220-MHz NMR was used to observe the titration behavior of the 5 histidine residues in porcine pancreatic ribonuclease (ribonucleate pyrimidine-nucleotido-2'-transferase (cyclizing), EC 3.1.4.22) and a derivative prepared by removal of 80% of the attached carbohydrate from this glycoprotein. Resonances due to histidine C-2 protons were observed over the full pH range for 3 of the residues; such resonances for the remaining 2 histidine residues broadened out as the pH was increased. Resonances due to histidine C-4 protons were also observed for 2 of the residues. The titration curves for both proteins were identical within experimental error. Resonances were assigned by comparison with histidine NMR titrations in ribonucleases from other species. Histidine 105, immediately adjacent to the site of attachment of a heterosaccharide side chain, has a C-2 proton chemical shift and pK that are insensitive to the large alteration in the bulk of the carbohydrate side chain. The chemical shifts of the C-2 proton of histidine 48 and of the C-4 proton of histidine 80, histidine residues that are close to one another and to another heterosaccharide side chain, show a similar insensitivity. The observations are direct evidence in support of the thesis that the heterosaccharides in porcine ribonuclease project away from the surface of the protein into the solution environment.  相似文献   

6.
Nuclear magnetic resonances of the C-2 protons of the three histidine residues in ribonuclease T1 have been studied at 360 MHz as a function of pH to discuss the structure of the active site. Comparison of the order of deuterium exchange of the histidine peaks with tritium incorporation rates into individual histidines of the enzyme leads to the unambigous assignment of one of the C-2 proton peaks to histidne-40. It has been concluded that histidine-40 is in the active site, interacting with a charged group of pK 4.1, which is replaced by the phosphate group of guanosine-3′-monophosphate in the enzyme-inhibitor complex. Histidine-92 is most likely a binding site for the complex, where the existence of a hydrogen bond between N-7 of the inhibitor and the ring NH proton of the histidine is suggested on the basis of NMR data.  相似文献   

7.
A study of the three histidine residues of bovine alpha-lactalbumin has been made using proton magnetic resonance (PMR) spectroscopy in order to obtain information on their environments in the protein and thereby to test in part the previously proposed structure. PMR titration curves are obtained for the H-4 resonances using difference spectroscopy and for the H-2 resonances and the 1-H-2-H exchange rates of the H-2 protons have been measured. The assignment of resonances to particular histidine residues is achieved by utilising their selective reaction with iodoacetate in conjunction with a PMR study of the carboxymethylation of alpha-N-acetyl-L-histidine. The H-2 and H-4 resonances labelled 1, 2 and 3 starting from the downfield end of the spectrum are assigned to histidine residues 107, 68 and 32 respectively. Their apparent pK values at low ionic strength and 20 degrees C are 5.78, 6.49 and 6.51 respectively. The experimental results on two histidine residues are consistent with the predictions of the proposed structure, which indicate that histidine-68 is an external residue and histidine-32 is partially buried and in the vicinity of aromatic residues. The experimental data on histidine 107 can also be rationalised with less certainty in terms of the proposed structure, which indicates a partially buried residue that may be involved in hydrogen bonding.  相似文献   

8.
J A Carver  J H Bradbury 《Biochemistry》1984,23(21):4890-4905
The resolved 1H NMR resonances of the aromatic region in the 270-MHz NMR spectrum of sperm whale, horse, and pig metmyoglobin (metMb) have been assigned, including the observable H-2 and H-4 histidine resonances, the tryptophan H-2 resonances, and upfield-shifted resonances from one tyrosine residue. The use of different Mb species, carboxymethylation, and matching of pK values allows the assignment of the H-4 resonances, which agree in only three cases out of seven with scalar-correlated two-dimensional NMR spectroscopy assignments by others. The conversion to hydroxymyoglobin at high pH involves rearrangements throughout the molecule and is observed by many assigned residues. In sperm whale ferric cyanomyoglobin, nine H-2 and eight H-4 histidine resonances have been assigned, including the His-97 H-2 resonance and tyrosine resonances from residues 103 and 146. The hyperfine-shifted resonances from heme and near-heme protons observe a shift with a pK = 5.3 +/- 0.3 (probably due to deprotonation of His-97, pK = 5.6) and another shift at pK = 10.8 +/- 0.3. The spectrum of high-spin ferrous sperm whale deoxymyoglobin is very similar to that of metMb, which allows the assignment of seven surface histidine H-2 and H-4 resonances and also resonances from the two tryptophan residues and one tyrosine. In diamagnetic sperm whale (carbon monoxy)myoglobin (COMb), 10 His H-2 and 11 His H-4 resonances are observed, and 8 H-2 and 9 H-4 resonances are assigned, including His-64 H-4, the distal histidine. This important resonance is not observed in sperm whale oxymyoglobin, which in general shows very similar titration curves to COMb. Histidine-36 shows unusual titration behavior in the paramagnetic derivatives but normal behavior in the diamagnetic derivatives, which is discussed in the accompanying paper [Bradbury, J. H., & Carver, J. A. (1984) Biochemistry (following paper in this issue)].  相似文献   

9.
A proton nuclear magnetic resonance (NMR) study at 100 and 300 MHz of neurotoxin II from the venom of Middle-Asian cobra Naja naja oxiana has been performed in 2H2O and H2O solutions. By means of chemical modification and double resonance all the aromatic residue resonances have been assigned. From the NMR titration curves, pK values of histidine 4 and histidine 31 residues have been determined. For one of the two neighbouring tryptophan residues pH dependence (in the 2-8-pH range) of the chemical shifts of indole protons has been revealed. According to the different sensitivity of the linewidth of indole NH resonances to pH in H2O solution, the accessibility of each of the tryptophan residues has been estimated. Temperature dependence has been observed for the linewidth of the aromatic resonances of the tyrosine 24 residue. Deuterium exchange rates have been measured for amide protons as well as for C(2)H histidine resonances. The NMR data obtained have allowed the conclusions to be made that the two histidine residues and one of the tryptophan residues should be localized on the surface of the protein globule, that arginine residues should be present in the environment of histidine 4, that histidine 31 and the buried tryptophan are possibly localized in close spatial proximity and that the side chain of tyrosine 24 is buried within the protein globule.  相似文献   

10.
The method of proton magnetic resonance was used to obtain information on the active site of the guanyl-specific ribonuclease from Penicillium chrysogenum, strain 152A. Four pH-dependent signals in the aromatic region of the proton NMR spectrum of the enzyme were assigned to the C-2 and C-4 protons of the two histidine residues. To determine the pK values and the environment of the histidine residues the pH dependence of their chemical shifts was studied and experimental curves thus obtained were analyzed taking into account the effect of other dissociating groups of the enzyme. The pK values of the histidine residues were found to be equal to 7.92 +/- 0.04 and 7.86 +/- 0.09. The results of the calculations indicate that each histidine residue should interact with an acidic group (carboxylic) of the protein (pK 4.33 and 3.48) and the distance between two histidine residues does not exceed 0.85 nm. The rate constants for the quasi-first order reaction of deuterium exchange of the histidine residues (11.2 s-1 and 3.7 x-1) suggest that both residues are accessible, though to a different degree to solvent. Formation of a complex between the enzyme and guanosine 3'-phosphate (Guo3'P) is accompanied by the shift of the histidine pK toward the alkaline region by 0.5. The existence of the complex is controlled by dissociation of a histidine residue with pK 8.7 in alkaline medium and by protonation of the N-7 of Guo3'P (pK 2.4) in acid medium. Nuclear Overhauser effect measurements were used to determine the glycosidic torsion angle for the Guo3'P in the complex and to estimate the distances between the histidine residues of the enzyme and ribose ring of Guo-3'P. The results obtained suggest that the nucleotide in the complex has an anti conformation and the least exposed histidine is spaced not more than 0.5 nm from the C-1' proton of the nucleotide ribose ring. A model for the enzyme-nucleotide complex is presented.  相似文献   

11.
The amino groups of ribonuclease A (RNase-A) have been methylated with formaldehyde and borohydride to provide observable resonances for proton magnetic resonance (PMR) studies. Although enzymatic activity is lost, PMR difference spectroscopy and PMR studies of thermal denaturation show native conformation is largely preserved in methylated RNase-A. Resonances corresponding to the NH2-terminal alpha-amino and 10 xi-amino N-methyl groups are titrated at 220 MHz to obtain pK values. After correction for the effects of methylation, using values previously derived from model compound studies, a pK of 6.6 is found for the alpha-amino group, a pK of 8.6 for the xi-amino group of lysine-41 and pK values ranging from 10.6 to 11.2 for the other lysine xi-amino groups. Interactions between lysine-7 and lysine-41 or between the alpha-amino and xi-amino groups of lysine-1 have been proposed to account for deviations from simple titration behaviour. The correct continuities for the titration curves of the histidine H-2 proton resonances have been confirmed by selective deuteration of the H-2 protons. Titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A show deviations from the titration curves for the native enzyme, indicating some alteration of the active-site conformation. In the presence of phosphate, titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A indicate binding of phosphate at the active site, but these curves continue to show deviations from the titration behaviour of native RNase-A. The titration curve for the N-methyl resonance of lysine-41 is perturbed considerably by the presence of phosphate, which indicates a possible catalytic role for lysine-41.  相似文献   

12.
To test the proposition that a histidine residue is essential in the catalytic mechanism of glutathione S-transferase, rat liver isoenzyme 3-3 specifically labeled with [ring-2-13C]histidine was prepared. The 13C NMR spectrum of the labeled enzyme revealed four resonances corresponding to the 4 histidine residues in the mu gene class type 3 subunit. Titration of the four resonances in the range of pH 4-9 both in the presence and absence of glutathione gave pK alpha values of much less than 4, 5.2, 7.1, and 7.8 for the four side chains that were identified by site-specific mutagenesis as His14, His83, His84, and His167, respectively. The magnetic resonance properties and titration behavior of His14 suggest that this residue is buried in a hydrophobic environment. Conservative replacement of each histidine with asparagine results in mutant enzymes that have catalytic properties very close to the native protein as assessed with three different substrates, 1-chloro-2,4-dinitrobenzene, 4-phenyl-3-buten-2-one, and phenanthrene 9,10-oxide. The results indicate clearly that none of the histidine residues of isoenzyme 3-3 is essential for stabilization of the bound glutathione thiolate or for any other aspect of catalysis.  相似文献   

13.
1H NMR spectroscopy at 100 MHz was used to determine the first-order rate constants for the 1H-2H exchange of the H-2 histidine resonances of RNase-A in 2H2O at 35 degrees C and pH meter readings of 7, 9, 10 and 10.5. Prolonged exposure in 2H2O at 35 degrees C and pH meter reading 11 caused irreversible denaturation of RN-ase-A. The rate constants at pH 7 and 9 agreed reasonably well with those obtained in 1H-3H exchange experiments by Ohe, J., Matsuo, H., Sakiyama, F. and Narita, K. [J. Biochem, (Tokyo) 75, 1197-1200 (1974)]. The rate data obtained by various authors is summarised and the reasons for the poor agreement between the data is discussed. The first-order rate constant for the exchange of His-48 increases rapidly from near zero at pH 9 (due to its inaccessibility to solvent) with increase of pH to 10.5 The corresponding values for His-119 show a decrease and those for His-12 a small increase over the same pH range. These changes are attributed to a conformational change in the hinge region of RNase-A (probably due to the titration of Tyr-25) which allows His-48 to become accessible to solvent. 1H NMR spectra of S-protein and S-peptide, and of material partially deuterated at the C-2 positions of the histidine residues confirm the reassignment of the histidine resonances of RNase-A [Bradbury, J. H. & Teh, J. S. (1975) Chem. Commun., 936-937]. The chemical shifts of the C-2 and C-4 protons of histidine-12 of S-peptide are followed as a function of pH and a pK' value of 6.75 is obtained. The reassignment of the three C-2 histidine resonances of S-protein is confirmed by partial deuteration studies. The pK' values obtained from titration of the H-2 resonances of His-48, His-105 and His-119 are 5.3, 6.5 and 6.0, respectively. The S-protein is less stable to acid than RNase-A since the former, but not the latter, shows evidence of reversible denaturation at pH 3 and 26 degrees C. His-48 in S-protein titrates normally and has a lower pK than in RN-ase-A probably because of the absence of Asp-14, which in RN-ase-A forms a a hydrogen bond with His-48 and causes it to be inaccessible to solvent, at pH values below 9.  相似文献   

14.
The aromatic region of the proton NMR spectrum of human adult hemoglobin (HbA) contains resonances from at least 11 titratable histidine residues. Assignments for five beta chain histidines have previously been proposed. In order to further characterize the aromatic spectra of HbA we studied 11 histidine-substituted and -perturbed hemoglobin variants in oxy and deoxy states and at different pH values by 400 MHz NMR spectroscopy. We propose assignments for the resonances corresponding to the C2 protons of His alpha 20, His alpha 72, His alpha 112, and His beta 77 in oxy and deoxy spectra and of His beta 97 and His beta 117 in deoxy spectra. Our assignments for His beta 2 and His beta 117 in the oxy state agree with those previously reported for the CO form, but in the deoxy state our spectra suggest a different assignment. Studies with Hb variants in which a histidine is perturbed by a neighboring substitution suggest additional assignments for His alpha 50 and His alpha 89 and demonstrate a strong dependence of the imidazole ring pK on hydrogen bond interactions and on the net charge of neighboring residues. Some of the newly proposed assignments of histidine resonances are used to discuss specific intermolecular interactions implicating His alpha 20, His beta 77, and His beta 117 in deoxy HbS polymers.  相似文献   

15.
The resonance of the C-2 proton of the distal histidine has been assigned in the 400 MHz 1H-NMR spectrum of soybean ozyleghemoglobin a. This resonance is subject to a very large ring current shift from the heme and occurs to high field of the residual HO2H peak. The pH dependence was measured from a series of nuclear Overhauser effect difference spectra over a range of pH values. The resonance moves to high field with decreasing pH and reflects titration of a one proton-dissociable group with pK 5.5. Resonances of the heme substituents and distal amino acid side-chains are also sensitive to this titration. Changes in ring-current shifts and nuclear Overhauser effects indicate that a conformational change occurs in the heme pocket upon titration of the pK 5.5 group. We propose that protonation of the distal histidine with pK 5.5 is accompanied by movement of the imidazole ring towards the heme normal. This movement would allow interaction between the ligated oxygen molecule and the protonated distal histidine at acid pH.  相似文献   

16.
J H Bradbury  J A Carver 《Biochemistry》1984,23(21):4905-4913
In paramagnetic metmyoglobin, cyanomyoglobin (CNMb), and deoxymyoglobin, His-36 has a high pK (approximately 8), and the NMR titration behavior of the H-2 resonance is perturbed, due to the presence at low pH of a hydrogen bond with Glu-38, which is broken at high pH. The His-36 H-4 resonance shows no shift with pK approximately 8 because of two opposing chemical shift effects but monitors the titration of nearby Glu-36 (pK = 5.6). In diamagnetic derivatives [(carbon monoxy)myoglobin (COMb) and oxymyoglobin (oxyMb)], the titration behavior of His-36 H-2 and H-4 resonances is normalized (pK approximately 6.8). The very slight alkaline Bohr effect in sperm whale myoglobin (Mb) is interpreted in terms of the pK change of His-36 from deoxyMb to oxyMb and compensating pK changes in the opposite direction of other unspecified groups. In sperm whale COMb at 40 degrees C, the distal histidine (His-64) and His-97 have pK values of 5.0 and 5.9. The meso proton resonances remote from these groups do not show a titration shift, but the nearby gamma-meso proton (pK = 5.3) responds to titration of both histidines, and the upfield Val-68 methyl at -2.3 ppm (pK = 4.7) witnesses the titration of nearby His-64. At 20 degrees C, the latter resonance is reduced in size, and a second resonance occurs at -2.8 ppm, which is insensitive to pH and, hence, more remote from His-64. Both resonances arise from two conformations of Val-68 in slow equilibrium. In oxyMb at 20 degrees C, only the latter resonance is observed, presumably because of the steric restrictions imposed by the hydrogen bond between ligand and His-64 in oxyMb, which is not present in COMb. In oxyMb the pK of His-97 (5.6) is similar to that of the meso proton resonances (5.5) and to the pK of other pH-dependent processes, including the very small acid Bohr effect. It is likely that these processes are controlled by the titration of His-97.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The histidine C-2 proton NMR titration curves of ribonuclease S-peptide (residues 1 to 20) and S-protein (residues 21 to 124) are reported. Although S-protein contains 3 histidine residues, four discrete resonances are observed to titrate. One of these arises from the equivalent histidine residues of unfolded S-protein. The variation in area of the four resonances indicate that there is a reversible pH-dependent equilibrium between the folded and unfolded forms of S-protein, with some unfolded material being present at most pH values. Two of the resonances of the folded S-protein can be assigned to 2 of the histidine residues, 48 and 105, from the close similarity of their titration curves to those in ribonuclease. These similarities indicate a homology of portions of the folded conformation of S-protein to that of ribonuclease in solution. These results indicate that the complete amino acid sequence is not required to produce a folded conformation similar to the native globular protein, and they appear to eliminate the possibility that proteins fold from their NH2 terminus during protein synthesis. The low pH inflection present in the titration curve assigned to histidine residue 48 in ribonuclease is absent from this curve in S-protein. This is consistent with our previous conclusion that this inflection arises from the interaction of histidine 48 with aspartic acid residue 14, which is also absent in S-protein. The third titrating resonance of native S-protein is assigned to the remaining histidine residue at position 119. The properties of this resonance are not identical with either of the titration curves of the active site histidine residues 12 and 119 of ribonuclease. The resonance assigned to histidine 119 is the only one significantly affected on the addition of sodium phosphate to S-protein, indicating that some degree of phosphate binding occurs. In both the absence and presence of phosphate this curve also lacks the low pH inflection observed in the histidine 119 NMR titration curve in ribonuclease. This difference presumably arise from a conformational between ribonuclease and the folded S-protein involving a carboxyl group.  相似文献   

18.
Assignments of resonances in the 1H nmr spectra of Cu(I) azurin to proton groups in the protein are discussed in detail. Comparisons are drawn between Cu(I), Cu(II), apo, Hg(II), and Co(II) azurin samples. Redox titration of Cu(I) azurin with K3Fe(CN)6, is used to correlate Cu(I) and Cu(II) 1H nmr spectral features, and observed line broadenings deriving from Cu(II) paramagnetic effects are used to deduce the distances of assigned proton groups from the copper center. Histidine residues are characterized in terms of pK values, rates of acid-base exchange near the the pK, and rates of C2H exchange with solvent deuterium. The possibility of histidine involvement in the azurincytochrome 551 electron exchange mechanism is discussed. A small number of NH protons observed to be distinctively inert to 2H exchange with solvent 2H2O, in the Cu(I) protein, are found to show increased lability on removal of the metal.  相似文献   

19.
The phosphocarrier protein HPr has been investigated by proton nuclear magnetic resonance (NMR) at 270 MHz in order to evaluate structural properties of the whole molecule and its active site. The titration behaviour of the three tyrosines of the HPr protein was analysed by monitoring the chemical shifts of the aromatic proton resonances of these residues as a function of pH. It was found that the HPr protein contains a lot of slowly exchanging NH backbone protons which suggested a relatively rigid secondary structure of the protein molecule itself although it contains no disulfide bridges. The HPr protein shows a sharp reversible denaturation behaviour at alkaline pH values. Between pH 10.8 and 11.1 two C-2 proton resonance peaks for the single histidine residue could be observed together with abrupt changes in the aromatic and aliphatic absorption region of the HPr protein which are due to chemical exchange processes. The NMR spectrum of the HPr protein is only changed a little upon raising the temperature from 14 degrees C to 70 degrees C. At 76 degrees C all resonances in the spectrum broaden and almost disappear. This process is irreversible.  相似文献   

20.
J M Pesando 《Biochemistry》1975,14(4):675-681
Nuclear magnetic resonance (nmr) spectra of human carbonic anhydrase B recorded in deuterium oxide reveal seven discrete single proton resonances between 7 and 9 ppm downfield from sodium 2,2-dimethyl-i-silapentane-5-sulfonate. Simplification of spectra by use of Fremy's salt, comparison of peak widths at intersections, and evaluation of the results of inhibition and modification experiments permit determination of the pH dependencies of these resonances. Five of these peaks change position with increasing pH; three move upfield by approximately 95 Hz and two move downfield by 10 and 23 Hz. The first three reflect residues with pK values of 7.23, 6.98, and 6 and can be assigned to the C-2 protons of histidines. The two remaining pH dependent resonances reflect groups with pK values of 8.2 and 8.24. Their line widths and T1 values are comparable to those of the first group, and they also appear to reflect C-H protons of histidines. Despite the structural and functional similarities of the B and C isozymes of human carbonic anhydrase, few of the low field resonances appear to be common to both. Six histidine C-2 protons are observed in the C enzyme and reflect groups with pK values of approximately 7.3, 6.5, 5.7, 6.6, 6.6, and 6.4. A seventh peak contains two protons and moves upfield with increasing pH without titrating. A final resonance to low field moves downfield with increasing pH and reflects a group with a pK between 6 and 7. Its behavior resembles that of peak 1 of the human B enzyme, and it also appears to be a histidine C-H proton. This peak may reflect a conserved residue in the two isozymes that plays an important role in enzymatic function, as discussed in the following paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号