首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exonucleases specific for either 3' ends (Escherichia coli exonuclease III) or 5' ends (bacteriophage T7 gene 6 exonuclease) of nascent DNA chains have been used to determine the number of nucleotides from the actual sites of DNA synthesis to the first nucleosome on each arm of replication forks in simian virus 40 (SV40) chromosomes labeled with [3H]thymidine in whole cells. Whereas each enzyme excised all of the nascent [3H]DNA from purified replicating SV40 DNA, only a fraction of the [3H]DNA was excised from purified replicating SV40 chromosomes. The latter result was attributable to the inability of either exonuclease to digest nucleosomal DNA in native replicating SV40 chromosomes, as demonstrated by the following observations: (i) digestion with either exonuclease did not reduce the amount of newly synthesized nucleosomal DNA released by micrococcal nuclease during a subsequent digestion period; (ii) in briefly labeled molecules, as much as 40% of the [3H]DNA was excised from long nascent DNA chains; (iii) the fraction of [3H]DNA excised by exonuclease III was reduced in proportion to the actual length of the radiolabeled DNA; (iv) the effects of the two exonucleases were additive, consistent with each enzyme trimming only the 3' or 5' ends of nascent DNA chains without continued excision through to the opposite end. When the fraction of nascent [3H]DNA excised from replicating SV40 DNA by exonuclease III was compared with the fraction of [32P]DNA simultaneously excised from an SV40 DNA restriction fragment, the actual length of nascent [3H]DNA was calculated. From this number, the fraction of [3H]DNA excised from replicating SV40 chromosomes was converted into the number of nucleotides. Accordingly, the average distance from either 3' or 5' ends of long nascent DNA chains to the first nucleosome on either arm of replication forks was found to be 125 nucleotides. Furthermore, each exonuclease excised about 80% of the radiolabel in Okazaki fragments, suggesting that less than one-fifth of the Okazaki fragments were contained in nucleosomes. On the basis of these and other results, a model for eukaryotic replication forks is presented in which nucleosomes appear rapidly on both the forward and retrograde arms, about 125 and 300 nucleotides, respectively, from the actual site of DNA synthesis. In addition, it is proposed that Okazaki fragments are initiated on nonnucleosomal DNA and then assembled into nucleosomes, generally after ligation to the 5' ends of long nascent DNA chains is completed.  相似文献   

2.
The distribution of preformed ("old") histone octamers between the two arms of DNA replication forks was analyzed in simian virus 40(SV40)-infected cells following treatment with cycloheximide to prevent nucleosome assembly from nascent histones. Viral chromatin synthesized in the presence of cycloheximide was shown to be deficient in nucleosomes. Replicating SV40 DNA (wild-type 800 and capsid assembly mutant, tsB11) was radiolabeled in either intact cells or nuclear extracts supplemented with cytosol. Nascent nucleosomal monomers were then released by extensive digestion of isolated nuclei, nuclear extracts or isolated viral chromosomes with micrococcal nuclease. The labeled nucleosomal DNA was purified and found to hybridize to both strands of SV40 DNA restriction fragments taken from each side of the origin of DNA replication, whereas Okazaki fragments hybridized only to the strand representing the retrograde DNA template. In addition, isolated, replicating SV40 chromosomes were digested with two strand-specific exonucleases that excised nascent DNA from either the forward or the retrograde side of replication forks. Pretreatment of cells with cycloheximide did not result in an excess of prenucleosomal DNA on either side of replication forks, but did increase the amount of internucleosomal DNA. These data are consistent with a dispersive model for nucleosome segregation in which "old" histone octamers are distributed to both arms of DNA replication forks.  相似文献   

3.
Replicating simian virus 40 (SV40) chromosomes were found to be similar to other eukaryotic chromosomes in that the rate and extent of micrococcal nuclease (MNase) digestion were greater with replicating than with nonreplicating mature SV40 chromatin. MNase digestion of replicating SV40 chromosomes, pulse labeled in either intact cells or nuclear extracts, resulted in the rapid release of nascent DNA as essentially bare fragments of duplex DNA (3-7S) that had an average length of 120 base pairs and were degraded during the course of the reaction. In addition, nucleosomal monomers, equivalent in size to those from mature chromosomes, were released. On the other hand, MNase digestion of uniformly labeled mature SV40 chromosomes resulted in the release of only nucleosomal monomers and oligomers. The small nascent DNA fragments released from replicating chromosomes represented prenucleosomal DNA (PN-DNA) from the region of replication forks that encompasses the actual sites of DNA synthesis and includes Okazaki fragments. Predigestion of replicating SV40 chromosomes with both Escherichia coli exonuclease III (3'-5') and bacteriophage T7 gene 6 exonuclease (5'-3') resulted in complete degradation of PN-DNA. This result, together with the observation that isolated PN-DNA annealed equally well to both strands of SV40 restriction fragments, demonstrated that PN-DNA originates from both sides of replication forks. Over 90% of isolated Okazaki fragments annealed only to the retrograde DNA template. The characteristics of isolated PN-DNA were assessed by examining its sensitivity to MNase and single strand specific S1 endonuclease, sedimentation behavior before and after deproteinization, buoyant density in CsCl after formaldehyde treatment, and size on agarose gels. In addition, it was observed that MNase digestion of purified SV40 DNA also resulted in the release of a transient intermediate similar in size to PN-DNA, indicating that a DNA-protein complex is not required to account for the appearance of PN-DNA. These and other data provide a model of replicating chromosomes in which DNA synthesis occurs on a region of replication forks that is free of nucleosomes and is designated as prenucleosomal DNA.  相似文献   

4.
R T Hay  M L DePamphilis 《Cell》1982,28(4):767-779
Initiation sites for DNA synthesis were located at the resolution of single nucleotides in and about the genetically defined origin of replication (ori) in replicating SV40 DNA purified from virus-infected cells. About 50% of the DNA chains contained an oligoribonucleotide of six to nine residues covalently attached to their 5' ends. Although the RNA-DNA linkage varied, the putative RNA primer began predominantly with rA. The data reveal that initiation of DNA synthesis is promoted at a number of DNA sequences that are asymmetrically arranged with respect to ori: 5' ends of nascent DNA are located at several sites within ori, but only on the strand that also serves as the template for early mRNA, while 5' ends of nascent DNA with the opposite orientation are located only outside ori on its early gene side. This clear transition between discontinuous (initiation sites) and continuous (no initiation sites) DNA synthesis defines the origin of bidirectional replication at nucleotides 5210--5211 and demonstrates that discontinuous synthesis occurs predominantly on the retrograde arms of replication forks. Furthermore, it appears that the first nascent DNA chain is initiated within ori by the same mechanism used to initiate nascent DNA ("Okazaki fragments") throughout the genome.  相似文献   

5.
Of the several DNA fragments present in the human lung cancer gene, 1.1 and 2.0 kilobase (kb) fragments corresponding to the intron of this gene were hybridized to a half part of the 27 nucleotides perfect palindrome present in the initiation part of replication in simian virus 40 (SV40) DNA. These two fragments cloned in pBR322 had good template activity, and the initiation of DNA replication started from the region of these fragments in an in vitro system, in which the initiation of DNA replication occurs on cloned DNA containing SV40 origin of DNA replication as described previously. Furthermore, these two clones could replicate autonomously in nuclei of SV40 transformed Cos cells, producing SV40 T antigen constitutively when the clones were transfected into Cos cells. These results show that functional SV40 origin-like sequences are present in human genomes, and they can replicate autonomously within the cells which are producing SV40 T antigen.  相似文献   

6.
In discontinuous polyoma DNA replication, the synthesis of Okazaki fragments is primed by RNA. During viral DNA synthesis in nuclei isolated from infected cells, 40% of the nascent short DNA fragments had the polarity of the leading strand which, in theory, could have been synthesized by a continuous mechanism. To rule out that the leading strand fragments were generated by degradation of nascent DNA, they were further characterized. DNA fragments from a segment of the genome which replication forks pass in only one direction were strand separated. The sizes of the fragments from both strands were similar, suggesting that one strand was not specifically degraded. Most important, however, the majority of the Okazaki fragments of both strands were linked to RNA at their 5' ends. For identification, the RNA was labeled at the 5' ends by [beta-32P]GTP, internally by [3H]CTP, [3H]GTP, and [3H]UTP, or at the 3' ends by 32P transfer from adjacent [32P]dTMP residues. All three kinds of labeling indicated that an equal proportion of DNA fragments from the two strands was linked to RNA primers.  相似文献   

7.
B C Lin  M C Chien    S Y Lou 《Nucleic acids research》1980,8(24):6189-6198
A type II restriction endonuclease Xmn I with a novel site specificity has been isolated from Xanthomonas manihotis. Xmn I does not cleave SV40 DNA, but cleaves phi X174 DNA into three fragments, which constitute 76.61%, 18.08% and 5.31% of the total length of 5386 base pairs, and cleaves pBR322 DNA into two fragments of 55.71% and 44.29% of the entire 4362 base pairs. The nucleotide sequences around the cleavage sites made by Xmn I are not exactly homologous, but they have a common sequence of 5' GAANNNNTTC 3' according to a simple computer program analysis on nucleotide sequences of phi X174 DNA, pBR322 DNA and SV40 DNA. The results suggest that the cleavage site of Xmn I is located within its recognition sequence of 5' GAANNNNTTC 3'.  相似文献   

8.
A novel class-II restriction endonuclease designated SwaI was purified from Staphylococcus warneri. This enzyme cleaves adenovirus 2 DNA, SV40 DNA and M13mp7 at one site each, but does not cleave lambda, PhiX174, pBR322 or pBR328 DNA. SwaI recognizes the octanucleotide sequence 5'-ATTTAAAT-3', cleaving in the center of the recognition sequence creating blunt ended DNA fragments. SwaI was used to digest chromosomal DNA from various microorganisms and human cells.  相似文献   

9.
In addition to recently characterized DraI (1), two new Type II restriction endonucleases, DraII and DraIII, with novel site-specificities were isolated and purified from Deinococcus radiophilus ATCC 27603. DraII and DraIII recognize the hepta- and nonanucleotide sequences (sequence in text) The cleavage sites within both strands are indicated by arrows. The recognition sequences were established by mapping of the cleavage sites on pBR322 (DraII) and fd109 RF DNA (DraIII). The sequence specifities were confirmed by computer-assisted restriction analyses of the generated fragment patterns of the sequenced DNA's of the bacteriophages lambda, phi X174 RF, M13mp8 RF and fd109 RF, the viruses Adeno2 and SV40, and the plasmids pBR322 and pBR328. The cleavage positions within the recognition sequences were determined by sequencing experiments.  相似文献   

10.
The maturation of replicating simian virus 40 (SV40) chromosomes into superhelical viral DNA monomers [SV40(I) DNA] was analyzed in both intact cells and isolated nuclei to investigate further the role of soluble cytosol factors in subcellular systems. Replicating intermediates [SV40(RI) DNA] were purified to avoid contamination by molecules broken at their replication forks, and the distribution of SV40(RI) DNA as a function of its extent of replication was analyzed by gel electrophoresis and electron microscopy. With virus-infected CV-1 cells, SV40(RI) DNA accumulated only when replication was 85 to 95% completed. These molecules [SV40(RI*) DNA] were two to three times more prevalent than an equivalent sample of early replicating DNA, consistent with a rate-limiting step in the separation of sibling chromosomes. Nuclei isolated from infected cells permitted normal maturation of SV40(RI) DNA into SV40(I) DNA when the preparation was supplemented with cytosol. However, in the absence of cytosol, the extent of DNA synthesis was diminished three- to fivefold (regardless of the addition of ribonucleotide triphosphates), with little change in the rate of synthesis during the first minute; also, the joining of Okazaki fragments to long nascent DNA was inhibited, and SV40(I) DNA was not formed. The fraction of short-nascent DNA chains that may have resulted from dUTP incorporation was insignificant in nuclei with or without cytosol. Pulse-chase experiments revealed that joining, but not initiation, of Okazaki fragments required cytosol. Cessation of DNA synthesis in nuclei without cytosol could be explained by an increased probability for cleavage of replication forks. These broken molecules masqueraded during gel electrophoresis of replicating DNA as a peak of 80% completed SV40(RI) DNA. Failure to convert SV40(RI*) DNA into SV40(I) DNA under these conditions could be explained by the requirement for cytosol to complete the gap-filling step in Okazaki fragment metabolism: circular monomers with their nascent DNA strands interrupted in the termination region [SV40(II*) DNA] accumulated with unjoined Okazaki fragments. Thus, separation of sibling chromosomes still occurred, but gaps remained in the terminal portions of their daughter DNA strands. These and other data support a central role for SV40(RI*) and SV40(II*) DNAs in the completion of viral DNA replication.  相似文献   

11.
A new round of chromosomal replication of a temperature-sensitive initiation mutant (dnaC) of Escherichia coli was initiated synchronously by a temperature shift from a nonpermissive to a permissive condition in the presence of arabinosyl cytosine. Increased amounts of nascent DNA fragments with homology for the chromosomal segment containing the replication origin (oriC) were found. The nascent DNA fragments were purified and treated with alkali to hydrolyze putative primer RNA and to expose 5'-hydroxyl DNA ends at the RNA-DNA junctions. The ends were then labeled selectively with T4 polynucleotide kinase and [gamma-32P]ATP at 0 degrees C and the terminally-labeled initiation fragments were purified by hybridization with origin probe DNAs containing one each of the constituent strands of oriC-DNA segment. The 32P-labeled initiation sites were then located at the resolution of single nucleotides in the nucleotide sequence of the oriC segment after cleavage with restriction enzymes. Two initiation sites of DNA synthesis, 37 nucleotides apart, were detected in one of the component strands of the oriC; in other words, in the strand whose 5' to 3' polynucleotide polarity lies counterclockwise on the E. coli genetic map. The results support the involvement of the primer RNA in the initiation of DNA synthesis at the origin of the E. coli genome and suggest that the first initiation event is asymmetric.  相似文献   

12.
Metabolism of Okazaki fragments during simian virus 40 DNA replication.   总被引:3,自引:0,他引:3  
Essentially all of the Okazaki fragments on replicating Simian virus 40 (SV40)DNA could be grouped into one of three classes. Class I Okazaki fragments (about 20%) were separated from longer nascent DNA chains by a single phosphodiester bond interruption (nick) and were quantitatively identified by treating purified replicating DNA with Escherichia coli DNA ligase and then measuring the fraction of Okazaki fragments joined to longer nascent DNA chains. Similarly, class II Okazaki fragments (about 30%) were separated by a region of single-stranded DNA template (gap) that could be filled and sealed by T4 DNA polymerase plus E. coli DNA ligase, and class III fragments (about 50%) were separated by RNA primers that could be removed with E. coli DNA olymerase I, allowing the fragments to be joined with E. coli DNA ligase. These results were obtained with replicating SV40 DNA that had been briefly labeled with radioactive precursors in either intact cells or isolated nuclei. When isolated nuclei were further incubated in the presence of cytosol, all of the Okazaki fragments were converted into longer DNA strands as expected for intermediates in DNA synthesis. However, when washed nuclei were incubated in the abscence of cytosol, both class I and class II Okazaki fragments accumulated despite the excision of RNA primers: class III Okazaki fragments and RNA-DNA covalent linkages both disappeared at similar rates. These data demonstrate the existence of RNA primers in whole cells as well as in isolated nuclei, and identify a unique gap-filling step that is not simply an extension of the DNA chain elongation process concomitant with the excision of RNA primers. One or more factos found in cytosol, in addition to DNA polymerase alpha, are specifically involved in the gap-filling and ligation steps. The sizes of mature Okazaki fragments (class I) and Okazaki fragments whose synthesis was completed by T4 DNA polymerase were measured by gel electrophoresis and found to be broadly distributed between 40 and 290 nucleotides with an average length of 135 nucleotides. Since 80% and 90% of the Okazaments does not occur at uniformly spaced intervals along the DNA template. During the excision of RNA primers, nascent DNA chains with a single ribonucleotide covalently attached to the 5' terminus were identified as transient intermediates. These intermediates accumulated during excision of RNA primers in the presence of adenine 9-beta-D-arabinoside 5'-triphosphate, and those Okazaki fragments blocked by RNA primers (class III) were found to have originated the farthest from the 5' ends of long nascent DNA strands. Thus, RNA primers appear to be excised in two steps with the second step, removal of the final ribonucleotide, being stimulated by concomitant DNA synthesis. These and other data were used to construct a comprehensive metabolic pathway for the initiation, elongation, and maturation of Okazaki fragments at mammalian DNA replication forks.  相似文献   

13.
Mouse liver DNA was cut out with BamHI and cloned into YIp5, which contained the URA3 gene of Saccharomyces cerevisiae in pBR322. Of the several plasmids isolated, two plasmids, pMU65 and pMU111, could transform S. cerevisiae from the URA- to the URA+ phenotype and could replicate autonomously within the transformant, indicating that mouse DNA fragments present in pMU65 or pMU111 contain autonomously replicating sequences (ARS) for replication in S. cerevisiae. Furthermore, to determine the correlation between ARS function in yeast cells and that in much higher organisms, we tried to challenge these plasmids with the simian virus 40 (SV40) DNA replication system. Of the two plasmids tested, the EcoRI-BglII region of pMU65 could be hybridized with a chemically synthesized 13-nucleotide fragment corresponding to the origin region of SV40 DNA. Both pMU65 (the EcoRI-BglII region cloned in pBR322) and its subclone pMU65EB could replicate semiconservatively, and initiation of DNA replication started from the EcoRI-BglII region when the replicating activity of these plasmids was tested in the in vitro SV40 DNA replication system we have established before. Furthermore, pMU65 and pMU65EB could replicate autonomously within monkey Cos cells which produce SV40 T antigen constitutively. These results show that a 2.5-kilobase fragment of the EcoRI-BglII region in pMU65 contains the ARS needed for replication in the SV40 DNA replication system.  相似文献   

14.
Analysis of the nucleotide sequences at the 5' ends of RNA-primed nascent DNA chains (Okazaki fragments) and of their locations in replicating simian virus 40 (SV40) DNA revealed the precise nature of Okazaki fragment initiation sites in vivo. The primary initiation site for mammalian DNA primase was 3'-purine-dT-5' in the DNA template and the secondary site was 3'-purine-dC-5', with the 5' end of the RNA primer complementary to either the dT or dC. The third position of the initiation site was variable with a preference for dT or dA. About 81% of the available 3'-purine-dT-5' sites and 20% of the 3'-purine-dC-5' sites were used. Purine-rich sites, such as PuPuPu and PyPuPu , were excluded. The 5'-terminal ribonucleotide composition of Okazaki fragments corroborated these conclusions. Furthermore, the length of individual RNA primers was not unique, but varied in size from six to ten bases with some appearing as short as three bases and some as long as 12 bases, depending on the initiation site used. This result was consistent with the average size (9 to 11 bases) of RNA primers isolated from specific regions of the genome. Excision of RNA primers did not appear to stop at the RNA-DNA junction, but removed a variable number of deoxyribonucleotides from the 5' end of the nascent DNA chain. Finally, only one-fourth of the replication forks contained an Okazaki fragment, and the distribution of their initiation sites between the two arms revealed that Okazaki fragments were initiated exclusively (99%) on retrograde DNA templates. The data obtained at two genomic sites about 350 and 1780 bases from ori were essentially the same as that reported for the ori region (Hay & DePamphilis , 1982), suggesting that the mechanism used to synthesize the first DNA chain at ori is the same as that used to synthesize Okazaki fragments throughout the genome.  相似文献   

15.
Cloning of nascent monkey DNA synthesized early in the cell cycle.   总被引:9,自引:2,他引:7       下载免费PDF全文
To study the structure and complexity of animal cell replication origins, we have isolated and cloned nascent DNA from the onset of S phase as follows: African green monkey kidney cells arrested in G1 phase were serum stimulated in the presence of the DNA replication inhibitor aphidicolin. After 18 h, the drug was removed, and DNA synthesis was allowed to proceed in vivo for 1 min. Nuclei were then prepared, and DNA synthesis was briefly continued in the presence of Hg-dCTP. The mercury-labeled nascent DNA was purified in double-stranded form by extrusion (M. Zannis-Hadjopoulos, M. Perisco, and R. G. Martin, Cell 27:155-163, 1981) followed by sulfhydryl-agarose affinity chromatography. Purified nascent DNA (ca. 500 to 2,000 base pairs) was treated with mung bean nuclease to remove single-stranded ends and inserted into the NruI site of plasmid pBR322. The cloned fragments were examined for their time of replication by hybridization to cellular DNA fractions synthesized at various intervals of the S phase. Among five clones examined, four hybridized preferentially with early replicating fractions.  相似文献   

16.
Somatic cells efficiently join unrelated DNA segments end-to-end.   总被引:44,自引:23,他引:21       下载免费PDF全文
Molecular substrates for probing nonhomologous recombination in somatic cells were constructed by inserting pBR322 sequences at selected sites on the simian virus 40 (SV40) genome. The chimeric products are too large to be packaged into an SV40 capsid. Therefore, production of viable progeny requires that most of the pBR322 sequences be deleted without altering any SV40 sequences that are essential for lytic infection. As judged by plaque assay, these recombination events occur at readily detectable frequencies after transfection into CV1 monkey kidney cells. Depending on the site of pBR322 insertion, the infectivities of the full-length circular or linear chimeras ranged from 0.02 to 2% of the infectivity of linear wild-type SV40 DNA. Nucleotide sequence analysis of several recombinant progeny revealed three distinct classes of recombination junction and indicated that the causative recombination events were minimally dependent on sequence homology. Potential mechanisms involving recombination at internal sites or at ends were distinguished by measuring the infectivity of chimeric molecules from which various lengths of pBR322 had been removed. These data support end-to-end joining as the primary mechanism by which DNA segments recombine nonhomologously in somatic cells. This end joining appears to be very efficient, since SV40 genomes with complementary single-stranded tails or with short non-complementary pBR322 tails were comparably infectious. Overall, this study indicates that mammalian somatic cells are quite efficient at the willy-nilly end-to-end joining of unrelated DNA segments.  相似文献   

17.
In the presence of emetine, an inhibitor of protein synthesis, nascent DNA on forward arms of replication forks in hamster cell lines containing either single or amplified copies of the DHFR gene region was enriched 5- to 7-fold over nascent DNA on retrograde arms. This forward arm bias was observed on both sides of the specific origin of bidirectional DNA replication located 17 kb downstream of the hamster DHFR gene (OBR-1), consistent with at least 85% of replication forks within this region emanating from OBR-1. However, the replication fork asymmetry induced by emetine does not result from conservative nucleosome segregation, as previously believed, but from preferentially inhibiting Okazaki fragment synthesis on retrograde arms of forks to produce 'imbalanced DNA synthesis'. Three lines of evidence support this conclusion. First, the bias existed in long nascent DNA strands prior to nuclease digestion of non-nucleosomal DNA. Second, the fraction of RNA-primed Okazaki fragments was rapidly diminished. Third, electron microscopic analysis of SV40 DNA replicating in the presence of emetine revealed forks with single-stranded DNA on one arm, and nucleosomes randomly distributed to both arms. Thus, as with cycloheximide, nucleosome segregation in the presence of emetine was distributive.  相似文献   

18.
We describe a sensitive method for mapping replication initiation sites near regions of sequenced genomic DNA in vivo. It is based on selective amplification of sets of segments in purified nascent DNA strands and subsequent determination of the lengths of these strands required to include each member of the set. We demonstrate the ability of this method to accurately map a well-defined origin, that of replicating SV40 DNA. Pulse-labeled DNA from infected CV-1 cells was size-fractionated on an alkaline sucrose gradient and newly-synthesized strands purified by immunoprecipitation using anti-BrdU antibodies. Three pairs of synthetic oligonucleotide primers were used to amplify three SV40 segments, using the polymerase chain reaction (PCR), at known distances from the origin. Lengths of the nascent DNA strands that allow amplification were determined by hybridization to probes homologous to the amplified segments and used to calculate position of the origin. Experiments with a mix of SV40 and human HeLa cell DNA demonstrate the applicability of the method to mapping origins present at the level of single-copy genomic sequences in mammalian cells.  相似文献   

19.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

20.
Restriction fragments of the mouse mammary tumor virus (MMTV) proviral DNA were obtained by molecular cloning procedures. A 4-kilobase fragment delimited by two PstI sites was isolated from unintegrated, linear MMTV DNA and amplified in the pBr322 plasmid vector. EcoRI fragments of proviral DNA, integrated into the genome of a GR mammary tumor cell line, were isolated as lambda recombinant molecules. Five different recombinant phages which contained the 3' region of the MMTV proviral DNA and adjacent host DNA sequences were isolated. Heteroduplex analysis and S1 nuclease digestion suggested that there is no extensive sequence homology in the host DNA flanking the different proviral genes. The cloned DNA was fractionated into site-specific restriction fragments which served as molecular probes in the analysis of the endogenous MMTV proviral copies of C3H, GR, BALB/c, and feral mice. This allowed the correlation of MMTV-specific EcoRI fragments obtained from genomic DNA of these strains with the 5' and 3' ends of the proviral gene. Restriction fragments of two clones which contained the proviral sequences adjacent to the flanking host DNA as well as 1 to 2 kilobases of host DNA were used as hybridization probes, and the results allow the following conclusions: the proviral DNA of both clones contains nucleotide sequences complementary to the 5' and 3' ends of proviral DNA; and the host DNA flanking one clone belongs to the unique class of genomic DNA, whereas the DNA flanking the second clone is reiterated at least 15 times within the mouse genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号