首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The DnaJ (Hsp40) cochaperone regulates the DnaK (Hsp70) chaperone by accelerating ATP hydrolysis in a cycle closely linked to substrate binding and release. The J-domain, the signature motif of the Hsp40 family, orchestrates interaction with the DnaK ATPase domain. We studied the J-domain by creating 42 mutant E. coli DnaJ variants and examining their phenotypes in various separate in vivo assays, namely, bacterial growth at low and high temperatures, motility, and propagation of bacteriophage lambda. Most mutants studied behaved like wild type in all assays. In addition to the (33)HisProAsp(35) (HPD) tripeptide found in all known functional J-domains, our study uncovered three new single substitution mutations (Y25A, K26A, and F47A) that totally abolish J-domain function. Furthermore, two glycine substitution mutants in an exposed flexible loop (R36G, N37G) showed partial loss of J-domain function alone and complete loss of function as a triple (RNQ-GGG) mutant coupled with the phenotypically silent Q38G. Interestingly, all the essential residues map to a small region on the same solvent-exposed face of the J-domain. Engineered mutations in the corresponding residues of the human Hdj1 J-domain grafted in E. coli DnaJ also resulted in loss of function, suggesting an evolutionarily conserved interaction surface. We propose that these clustered residues impart critical sequence determinants necessary for J-domain catalytic activity and reversible contact interface with the DnaK ATPase domain.  相似文献   

2.
At the site of vascular injury, von Willebrand factor (VWF) mediates platelet adhesion to subendothelial connective tissue through binding to the N-terminal domain of the alpha chain of platelet glycoprotein Ib (GPIbalpha). To elucidate the molecular mechanisms of the binding, we have employed charged-to-alanine scanning mutagenesis of the soluble fragment containing the N-terminal 287 amino acids of GPIbalpha. Sixty-two charged amino acids were changed singly or in small clusters, and 38 mutant constructs were expressed in the supernatant of 293T cells. Each mutant was assayed for binding to several monoclonal antibodies for human GPIbalpha and for ristocetin-induced and botrocetin-induced binding of 125I-labeled human VWF. Mutations at Glu128, Glu172, and Asp175 specifically decreased both ristocetin- and botrocetin-induced VWF binding, suggesting that these sites are important for VWF binding of platelet GPIb. Monoclonal antibody 6D1 inhibited ristocetin- and botrocetin-induced VWF binding, and a mutation at Glu125 specifically reduced the binding to 6D1. In contrast, antibody HPL7 had no effect for VWF binding, and mutant E121A reduced the HPL7 binding. Mutations at His12 and Glu14 decreased the ristocetin-induced VWF binding with normal botrocetin-induced binding. Crystallographic modeling of the VWF-GPIbalpha complex indicated that Glu128 and Asp175 form VWF binding sites; the binding of 6D1 to Glu125 interrupts the VWF binding of Glu128, but HPL7 binding to Glu121 has no effect on VWF binding. Moreover, His12 and Glu14 contact with Glu613 and Arg571 of VWF A1 domain, whose mutations had shown similar phenotype. These findings indicated the novel binding sites required for VWF binding of human GPIbalpha.  相似文献   

3.
The hydrolyzed α-[Ru(azpy)2Cl2] (azpy is 2-(phenylazo)pyridine; α indicates that the isomer in which the coordinating pairs Cl, N(py), and N(azo) are cis, trans, and cis, respectively) binding to guanine (G), adenine (A), methionine (Met), and histidine (His) residues were investigated by using density functional theory. Reactant complexes (RC), product complexes (PC), and transition states (TS) involved were fully characterized. The calculated energy profiles showed that the activation free energies for the substitutions of hydrolyzed α-[Ru(azpy)2Cl2] with Met was apparently lower than those of guanine and adenine. This indicate that the hydrolyzed α-[Ru(azpy)2Cl2] compounds may preferentially bind to the sulfur-containing amino acids residues in vivo. Moreover, the natural orbital population analysis (NPA) showed that the Ru atom gained the greatest negative charges in the reactions of hydrolyzed α-[Ru(azpy)2Cl2] with Met, which may contribute to their remarkably low activation free energies partially.  相似文献   

4.
Lipopolysaccharide binding protein (LBP) is a 60 kDa acute phase glycoprotein capable of binding to LPS of Gram-negative bacteria and facilitating its interaction with cellular receptors. This process is thought to be of great importance in systemic inflammatory reactions such as septic shock. A peptide corresponding to residues 86-99 of human LBP (LBP86-99) has been reported to bind specifically with high affinity the lipid A moiety of LPS and to inhibit the interaction of LPS with LBP. We identified essential amino acids in LBP86-99 for binding to LPS by using a peptide library corresponding to the Ala-scanning of human LBP residues 86-99. Amino acids Trp91 and Lys92 were indispensable for peptide-LPS interaction and inhibition of LBP-LPS binding. In addition, several alanine-substituted synthetic LBP-derived peptides inhibited LPS-LBP interaction. Substitution of amino acids Arg94, Lys95 and Phe98 by Ala increased the inhibitory effect. The mutant Lys95 was the most active in blocking LPS binding to LBP. These findings emphasize the importance of single amino acids in the LPS binding capacity of small peptides and may contribute to the development of new drugs for use in the treatment of Gram-negative bacterial sepsis.  相似文献   

5.
We discussed application of in vitro mutagenesis on H+-ATPase (F0F1) of Escherichia coli. The oligonucleotide-directed site specific mutagenesis and construction of a set of truncated subunits were useful for identifying essential residues of beta subunit and a functional region of epsilon subunit, respectively, of this complicated membrane enzyme.  相似文献   

6.
Previous studies have shown that the reduced nicotinamide adenine dinucleotide phosphate (NADPH)- binding domain of rat liver microsomal steroid 5alpha-reductase isozyme-1 (r5alphaR-1) is in a highly conserved region of the polypeptide sequence (residues 160-190). In this study, we investigated, by site-directed mutagenesis, the role of hydroxylated and aromatic amino acids within the NADPH-binding domain. The r5alphaR-1 cDNA was cloned into a pCMV vector, and the double strand site-directed mutagenesis method was used to create mutants Y179F, Y179S, Y189F, Y189S, S164A, S164T, and Y187F, which were subsequently expressed in COS-1 cells. Kinetic studies of the expressed enzymes showed that the mutation Y179F resulted in an approximately 40-fold increase in the Km for NADPH versus wild-type, with only a 2-fold increase in the Km for testosterone. The mutants Y189F and S164A showed smaller increases (4 and 6-fold) in Kms for NADPH and no significant change in the Km for testosterone, whereas Y189S had kinetic properties similar to the wild-type r5alphaR-1. Mutants Y179S and S164T both resulted in inactive enzymes, whereas F187Y showed an approximately 5-fold decrease in Km for NADPH and a significant increase (approximately 18-fold) in the Km for testosterone. The results suggest that the -OH functionality of Y179 is involved in cofactor binding, but is not essential for the activity of the enzyme, whereas the -OH functionalities of Y189 and S164 play lesser roles in cofactor binding to r5alphaR-1 and may not be required for enzyme activity. On the other hand, the residue F187 may be important for the binding of both NADPH and testosterone.  相似文献   

7.
A truncated human c-Ha-ras gene product, ras(1-171) protein, was prepared and chemically modified with maleimide spin-label (MSL). By trypsin digestion of the MSL-labeled ras(1-171) protein, MSL-labeled peptide fragments were isolated and sequenced. The cysteine residue in position 118 of the protein, but not the other cysteine residues, Cys-51 or Cys-80, was found to be specifically labeled by MSL. The ESR spectrum of the MSL-labeled ras(1-171) protein indicates that the MSL group attached to Cys-118 is strongly immobilized. Proton NMR spectra at 400-MHz were measured for this MSL-labeled ras(1-171) protein and also for a control sample of a labeled ras(1-171) protein whose MSL was reduced by sodium ascorbate. In the difference spectra for these two proteins, resonances of protons in the vicinity of the MSL group attached to Cys-118 of the ras(1-171) protein were observed. Thus, the MSL group was found to be in the vicinity of the protein-bound GDP. A phenylalanine residue and two histidine residues, which were characterized by 2D HOHAHA and DQF-COSY spectra, were also found to be in the vicinity of MSL. NOE and pH titration analyses indicate that this phenylalanine residue is close to the bound GDP and one of the two histidine residues. By carboxypeptidase digestion, the two histidine residues near MSL were identified as His-27 and His-94.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Interaction of the vascular cell adhesion molecule (VCAM-1) with its counter-receptor very late antigen-4 (VLA-4) (integrin alpha 4 beta 1) is important for a number of developmental pathways and inflammatory functions. We are investigating the molecular mechanism of this binding, in the interest of developing new anti-inflammatory drugs that block it. In a previous report, we showed that the predominant form of VCAM-1 on stimulated endothelial cells, seven-domain VCAM (VCAM-7D), is a functionally bivalent molecule. One binding site requires the first and the other requires the homologous immunoglobulin-like domain. Rotary shadowing and electron microscopy of recombinant soluble VCAM-7D molecules suggests that the seven Ig-like domains are extended in a slightly bent linear array, rather than compactly folded together. We have systematically mutagenized the first domain of VCAM-6D (a monovalent, alternately spliced version mission domain 4) by replacing 3-4 amino acids of the VCAM sequence with corresponding portions of the related ICAM-1 molecule. Specific amino acids, important for binding VLA-4 include aspartate 40 (D40), which corresponds to the acidic ICAM- 1 residue glutamate 34 (E34) previously reported to be essential for binding of ICAM-1 to its integrin counter-receptor LFA-1. A small region of VCAM including D40, QIDS, can be replaced by the similar ICAM- 1 sequence, GIET, without affecting function or epitopes, indicating that this region is part of a general integrin-binding structure rather than a determinant of binding specificity for a particular integrin. The VCAM-1 sequence G65NEH also appears to be involved in binding VLA-4.  相似文献   

9.
The kinetic study of 1H leads to 3H exchange in C(8) H-groups of purinic residues of DNAs with different G-C content as well as in corresponding dNMP mixtures have been carried out. The present results show that 1H--3H exchange in DNA is retarded (as compared to the exchange in dNMP mixtures) to a lesser extent (Kret =2.4-2.8) than in RNA (Kret=6-8). The degree of retardation in these polymers is practically independent of their nucleotide composition. Assuming the ylide mechanism of exchange reaction it is suggested that the lower rate of 1H leads to 3H exchange in C(8) H-groups of purinic residues in polynucleotides of A-form (RNA and other polyribonucleotides) as compared to those of B-form (DNA and other polydeoxyribonucleotides) might be accounted for by decreased availability of C(8) H-groups for OH-ions of the solvent due to a different microenviroment of these groups in A- and B-type helixes.  相似文献   

10.
DNA-fiber EPR spectroscopy and its application to studies of the DNA binding orientation and dynamic properties of Cu(II) ions and their complexes with amino acids and peptides are reviewed. Cu(II) ions bind in at least two different binding modes; one mode was mobile while the other mode fixed the orientation of the coordination plane. The hydroxyl groups of L-Ser and L-Thr fixed the coordination plane of their respective Cu(II) complexes parallel to the DNA base pair plane, whereas Cu(II) complexes of Lys and Arg induced several binding modes, depending on the tertiary structure of the DNA and the chirality of the amino acids. Unusually broadened signals observed for the His complex were assigned to a mono-L-His complex stacked stereospecifically along the DNA double helix. In comparison, Cu(II). Xaa-Xaa' -His type complexes oriented in the minor groove with different affinities and extents of randomness depending on the Xaa-Xaa' sequence and the chirality of Xaa or Xaa' while the C-terminal Xaa residues in Cu(II).Arg-Gly-His-Xaa (Xaa=L-Leu or L-Glu) decreased the stereospecificity and the stability of the complexes bound to DNA. In contrast to Xaa-Xaa'- His complexes, the coordination planes of Cu(II).Gly-L-His-Gly and Cu(II).Gly-L-His-L-Lys complexes were found to lie parallel to the DNA-fiber axis. Dinuclear Cu(II).carnosine complexes were also shown to bind to DNA stereospecifically.  相似文献   

11.
PhaR from Paracoccus denitrificans functions as a repressor or autoregulator of the expression of genes encoding phasin protein (PhaP) and PhaR itself, both of which are components of polyhydroxyalkanoate (PHA) granules (A. Maehara, S. Taguchi, T. Nishiyama, T. Yamane, and Y. Doi, J. Bacteriol. 184:3992-4002, 2002). PhaR is a unique regulatory protein in that it also has the ability to bind tightly to an effector molecule, PHA polyester. In this study, by using a quartz crystal microbalance, we obtained direct evidence that PhaR binds to the target DNA and poly[(R)-3-hydroxybutyrate] [P(3HB)], one of the PHAs, at the same time. To identify the PhaR amino acid residues responsible for DNA binding, deletion and PCR-mediated random point mutation experiments were carried out with the gene encoding the PhaR protein. PhaR point mutants with decreased DNA-binding abilities were efficiently screened by an in vivo monitoring assay system coupled with gene expression of green fluorescent protein in Escherichia coli. DNA-binding abilities of the wild-type and mutants of recombinant PhaR expressed in E. coli were evaluated using a gel shift assay and a surface plasmon resonance analysis. These experiments revealed that basic amino acids and a tyrosine in the N-terminal region, which is highly conserved among PhaR homologs, are responsible for DNA binding. However, most of the mutants with decreased DNA-binding abilities were unaffected in their ability to bind P(3HB), strongly suggesting that PhaR has two separate domains capable of binding to the target DNA and P(3HB).  相似文献   

12.
ΑΤ1 receptor (AT1R) antagonists exert their antihypertensive effects by preventing the vasoconstrictive hormone AngII to bind to the AT1 receptor. It has been proposed that these biological effects are mediated through a two-step mechanism reaction. In the first step, they are incorporated in the core of the lipid bilayers and in the second step they reach the active site of the receptor through lateral diffusion. In this model, drug/membrane interactions are key elements for the drugs achieving inhibition at the AT1 receptor. In this work, the interactions of the prodrug candesartan cilexetil (TCV-116) with lipid bilayers are studied at molecular detail. Solid-state 13C-CP/MAS, 2D 1H-1H NOESY NMR spectroscopy and in silico calculations are used. TCV-116 and olmesartan, another drug which acts as an AT1R antagonist are compared for their dynamic effects in lipid bilayers using solid-state 2H-NMR. We find a similar localization of TCV-116 compared to other AT1 antagonists in the intermediate polar region. In addition, we can identify specific local interactions. These interactions may be associated in part with the discrete pharmacological profiles observed for different antagonists.  相似文献   

13.
The complexes formed between Escherichia coli single-stranded DNA binding protein (SSBP) and the heavy atom-modified single-stranded polynucleotides poly(5-BrU) and poly(5-HgU) are investigated using optically detected magnetic resonance (ODMR) methods. In these complexes the triplet state properties of the tryptophan residues are subjected to the external heavy atom effect generated by bromine and mercury atoms and are characterized by a shortened triplet state lifetime and the appearance of the otherwise dark [D] + [E] slow passage ODMR signal. These features provide direct evidence for close range interactions between tryptophan residue(s) and the nucleotide bases in the complexes. The extent of the triplet state lifetime reduction in the case of the SSBP-poly(5-HgU) complex together with steric considerations of the complex structure is consistent only with a van der Waals contact between the perturbed molecule and the heavy atom perturber by means of a stacking interaction. Fast passage ODMR measurements show a lifetime for a sublevel of the perturbed tryptophan chromophore(s) in this complex on the order of 1 ms. The amplitude-modulated phosphorescence microwave double resonance technique captures selectively the broadened and red-shifted phosphorescence spectrum of the heavy atom-perturbed tryptophan residue(s). This work supports a model for the binding of SSBP to single-stranded polynucleotides in which the bases are inserted into hydrophobic regions of the protein, where they are likely to undergo stacking interactions with the indole moiety of buried tryptophan residues.  相似文献   

14.
Zhou J  Chen CH  Aiken C 《Journal of virology》2006,80(24):12095-12101
The compound 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (DSB) potently and specifically inhibits human immunodeficiency virus type 1 (HIV-1) replication by delaying the cleavage of the CA-SP1 junction in Gag, leading to impaired maturation of the viral core. In this study, we investigated HIV-1 resistance to DSB by analyzing HIV-1 mutants encoding a variety of individual amino acid substitutions in the CA-SP1 cleavage site. Three of the substitutions were lethal to HIV-1 replication owing to a deleterious effect on particle assembly. The remaining mutants exhibited a range of replication efficiencies; however, each mutant was capable of replicating in the presence of concentrations of DSB that effectively inhibited wild-type HIV-1. Mutations conferring resistance to DSB also led to impaired binding of the compound to immature HIV-1 virions and loss of DSB-mediated inhibition of cleavage of Gag. Surprisingly, two of the DSB-resistant mutants retained an intermediate ability to bind the compound, suggesting that binding of DSB to immature HIV-1 particles may not be sufficient for antiviral activity. Overall, our results indicate that Gag amino acids L363 and A364 are critical for inhibition of HIV-1 replication by DSB and suggest that these residues form key contacts with the drug in the context of the assembling HIV-1 particle. These results have implications for the design of and screening for novel inhibitors of HIV-1 maturation.  相似文献   

15.
In this study we characterized the sensitive to low humidity 1 (slh1) mutant of Arabidopsis ecotype No-0 which exhibits normal growth on agar plate medium but which on transfer to soil shows growth arrest and development of necrotic lesions. cDNA microarray hybridization and RNA gel blot analysis revealed that genes associated with activation of disease resistance were upregulated in the slh1 mutants in response to conditions of low humidity. Furthermore, the slh1 mutants accumulate callose, autofluorescent compounds and salicylic acid (SA). We demonstrate that SA is required for the slh1 phenotype but not PAD4 or NPR1. SLH1 was isolated by map-based cloning and it encodes a resistance (R)-like protein consisting of a domain with Toll and interleukin-1 receptor homology (TIR), a nucleotide-binding domain (NB), leucine-rich repeats (LRR) and a carboxy-terminal WRKY domain. SLH1 is identical to the R gene RRS1-R of the Arabidopsis ecotype Nd-1, a gene which confers resistance to the bacterial pathogen Ralstonia solanacearum GMI1000 and also functions as an R gene to this pathogen in No-0. We identified a 3 bp insertion mutation in slh1 that results in the addition of a single amino acid in the WRKY domain; thereby impairing its DNA-binding activity. Our data suggest that SLH1 disease resistance signaling may be negatively regulated by its WRKY domain in the R protein and that the constitutive defense activation conferred by the slh1 mutation is inhibited by conditions of high humidity.  相似文献   

16.
 The compound [Pt(lysine)Cl2] (Kplatin) was previously identified in a study of platinum amino acid complexes as a potential antitumor drug candidate. The DNA binding properties, high mobility group (HMG)-domain protein affinity for the platinated DNA, and cytotoxicity against HeLa cells of Kplatin and three related (N,O) chelated platinum(II) amino acid complexes, [Pt(arginine)Cl2] (Rplatin), K[Pt(Ne-acetyllysine)Cl2] (NacKplatin), and K[Pt(norleucine)Cl2] (Norplatin), are reported. The four complexes have identical PtCl2(N,O) coordination environments. A new solid phase screening methodology was devised in which platinated DNA probes are covalently attached to a nylon support and tested for their ability to bind a fluorescently labeled HMG-domain protein. The fluorescent HMG-domain protein was generated by expressing a fusion of the green fluorescent protein (GFP) with recombinant rat HMG1. Binding revealed by the solid phase method correlated well with the results of gel mobility shift and HeLa cytotoxicity assays. These results suggest that the net charge on the complex, rather than the nature of the side chain, is the most important factor underlying the DNA binding properties and toxicity of amino acid (N,O) chelated platinum complexes. This property explains why Kplatin was previously selected from the pool of platinum amino acid complexes based on the ability of its DNA adducts to bind HMG1. Received: 3 February 1999 / Accepted: 7 April 1999  相似文献   

17.
Human multidrug resistance protein 1 (MRP1) confers resistance to many chemotherapeutic agents and transports diverse conjugated organic anions. We previously demonstrated that Glu1089 in transmembrane (TM) 14 is critical for the protein to confer anthracycline resistance. We have now assessed the functional importance of all polar and charged amino acids in this TM helix. Asn1100, Ser1097, and Lys1092, which are all predicted to be on the same face of the helix as to Glu1089, are involved in determining the substrate specificity of the protein. Notably, elimination of the positively charged side chain of Lys1092, increased resistance to the cationic drugs vincristine and doxorubicin, but not the electroneutral drug etoposide (VP-16). In addition, mutations S1097A and N1100A selectively decreased transport of 17beta-estradiol 17-(beta-d-glucuronide) (E217betaG) but not cysteinyl leukotriene 4 (LTC4), demonstrating the importance of multiple residues in this helix in determining substrate specificity. In contrast, mutations of Asp1084 that eliminate the carboxylate side chain markedly decreased resistance to all drugs tested, as well as transport of both E217betaG and LTC4, despite the fact that LTC4 binding was unaffected. We show that these mutations prevent the ATP-dependent transition of the protein from a high to low affinity substrate binding state and drastically diminish ADP trapping at nucleotide binding domain 2. Based on results presented here and crystal structures of prokaryotic ATP binding cassette transporters, Asp1084 may be critical for interaction between the cytoplasmic loop connecting TM13 and TM14 and a region of nucleotide binding domain 2 between the conserved Walker A and ABC signature motifs.  相似文献   

18.
Belle  Simon  Verneaux  Valérie  Millet  Laurent  Parent  Claire  Magny  Michel 《Aquatic Ecology》2015,49(3):279-291
Aquatic Ecology - This study aims at estimating the potential of the hydrogen stable isotope (δ2H) analysis of chironomid remains (HC) to reconstruct past changes in the methane (CH4) cycle in...  相似文献   

19.
A highly sensitive HPLC–ESI-MS method has been developed and validated for the quantification of ginkgolic acid (15:1) in a small quantity of rat plasma (50 μL) using its homologous compound ginkgolic acid (17:1) as an internal standard. GA (15:1) and GA (17:1) were extracted from biological matrix by direct protein precipitation with 5-fold volume of methanol and separated on an Elite hypersil BDS C18 column (2.1 × 100 mm, 3 μm), eluted with acetonitrile:water (92:8, v/v, containing 0.3% glacial acetic acid). Linear range was 8–1000 ng/mL with the square regression coefficient (r2) of 0.996. The lowest concentration (8 ng/mL) in the calibration curve was estimated as LLOQ with both deviation of accuracy and RSD of precision <20% (n = 6). The intra- and inter-day precision ranged from 3.6% to 9.9%, and the intra- and inter-day accuracy was between 89.9% and 101.3%. This method was successfully applied to study pharmacokinetics of GA (15:1) in rats after oral administration at a dose of 10 mg/kg. GA (15:1) pharmacokinetic parameters Cmax, Tmax, t1/2, AUC0–12h are 1552.9 ± 241.0 ng/mL, 0.9 ± 0.7 h, 5.5 ± 2.6 h, 3356.0 ± 795.3 ng h/mL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号