首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single molecule analysis of DNA replication   总被引:4,自引:0,他引:4  
Herrick J  Bensimon A 《Biochimie》1999,81(8-9):859-871
We describe here a novel approach for the study of DNA replication. The approach is based on a process called molecular combing and allows for the genome wide analysis of the spatial and temporal organization of replication units and replication origins in a sample of genomic DNA. Molecular combing is a process whereby molecules of DNA are stretched and aligned on a glass surface by the force exerted by a receding air/water interface. Since the stretching occurs in the immediate vicinity of the meniscus, all molecules are identically stretched in a size and sequence independent manner. The application of fluorescence hybridization to combed DNA results in a high resolution (1 to 4 kb) optical mapping that is simple, controlled and reproducible. The ability to comb up to several hundred haploid genomes on a single coverslip allows for a statistically significant number of measurements to be made. Direct labeling of replicating DNA sequences in turn enables origins of DNA replication to be visualized and mapped. These features therefore make molecular combing an attractive tool for genomic studies of DNA replication. In the following, we discuss the application of molecular combing to the study of DNA replication and genome stability.  相似文献   

2.
The factors that govern replication programs are still poorly identified in metazoans, especially in mammalian cells. Thanks to molecular combing, the dynamics of DNA replication can be assessed at the genome-scale level from the cumulative analysis of single DNA fibers. This technique notably enables measurement of replication fork speed and fork asymmetry and that of distances separating either initiation or termination events. The results presented here aim to evaluate requirements critical to accurate measurement of replication parameters by molecular combing. We show that sample size, fiber length and DNA counterstaining are crucial to gain robust information concerning replication dynamics. Our results thus provide a methodological frame to investigate the DNA replication program through molecular combing analyses.  相似文献   

3.
Molecular combing technology is an important new tool for the functional and physical mapping of genome segments. It is designed to identify amplifications, microdeletions, and rearrangements in a DNA sequence and to study the process of DNA replication. This technique has recently been used to identify and analyze the dynamics of replication in amplified domains. In Bradysia hygida, multiple amplification initiation sites are predicted to exist upstream of the BhC4-1 gene. However, it has been impossible to identify them using the available standard techniques. The aim of this study was to optimize molecular combing technology to obtain DNA fibers from the polytene nuclei of the salivary glands of B. hygida to study the dynamics of DNA replication in this organism. Our results suggest that combing this DNA without prior purification of the polytene nuclei is possible. The density, integrity, and linearity of the DNA fibers were analyzed, fibers 50 to 300 kb in length were detected, and a 9-kb fragment within the amplified region was visualized using biotin detected by Alexa Fluor 488-conjugated streptavidin technique. The feasibility of physically mapping these fibers demonstrated in this study suggests that molecular combing may be used to identify the replication origin of the BhC4-1 amplicon.  相似文献   

4.
The replisome catalyses DNA synthesis at a DNA replication fork. The molecular behaviour of the individual replisomes, and therefore the dynamics of replication fork movements, in growing Escherichia coli cells remains unknown. DNA combing enables a single‐molecule approach to measuring the speed of replication fork progression in cells pulse‐labelled with thymidine analogues. We constructed a new thymidine‐requiring strain, eCOMB (E. coli for combing), that rapidly and sufficiently incorporates the analogues into newly synthesized DNA chains for the DNA‐combing method. In combing experiments with eCOMB, we found the speed of most replication forks in the cells to be within the narrow range of 550–750 nt s?1 and the average speed to be 653 ± 9 nt s?1 (± SEM). We also found the average speed of the replication fork to be only 264 ± 9 nt s?1 in a dnaE173eCOMB strain producing a mutant‐type of the replicative DNA polymerase III (Pol III) with a chain elongation rate (300 nt s?1) much lower than that of the wild‐type Pol III (900 nt s?1). This indicates that the speed of chain elongation by Pol III is a major determinant of replication fork speed in E. coli cells.  相似文献   

5.
6.
Initiation of DNA replication is tightly controlled during the cell cycle to maintain genome integrity. In order to directly study this control we have previously established a cell-free system from human cells that initiates semi-conservative DNA replication. Template nuclei are isolated from cells synchronized in late G1 phase by mimosine. We have now used DNA combing to investigate initiation and further progression of DNA replication forks in this human in vitro system at single molecule level. We obtained direct evidence for bidirectional initiation of divergently moving replication forks in vitro. We assessed quantitatively replication fork initiation patterns, fork movement rates and overall fork density. Individual replication forks progress at highly heterogeneous rates (304 ± 162 bp/min) and the two forks emanating from a single origin progress independently from each other. Fork progression rates also change at the single fork level, suggesting that replication fork stalling occurs. DNA combing provides a powerful approach to analyse dynamics of human DNA replication in vitro.  相似文献   

7.
Dynamic changes to the genomic structure and to the DNA replication programme are important determinants of normal and abnormal cell development. To understand these changes and how they vary from cell to cell, single DNA molecules from both normal and abnormal cell populations must be examined and compared. Physical characterisation of single genomes at the kilobase level of resolution over large genomic regions is possible with molecular combing technology. An array of combed single DNA molecules is prepared by stretching molecules attached by their extremities to a silanised glass surface with a receding air-water meniscus. By performing fluorescent hybridisation on combed DNA, genomic probe position can be directly visualised, providing a means to construct physical maps and detect micro-rearrangements. Single-molecule DNA replication can also be monitored through fluorescent detection of incorporated nucleotide analogues on combed DNA molecules. These and other single-molecule applications of molecular combing are discussed in this paper and future developments of the technology are considered.  相似文献   

8.
DNA combing is a powerful method developed by Bensimon and colleagues to stretch DNA molecules on silanized glass coverslips. This technique provides a unique way to monitor the activation of replication origins and the progression of replication forks at the level of single DNA molecules, after incorporation of thymidine analogs, such as 5-bromo-2'-deoxyuridine (BrdU), 5-iodo-2'-deoxyuridine (IdU) and 5-chloro-2'-deoxyuridine (CldU) in newly-synthesized DNA. Unlike microarray-based approaches, this assay gives access to the variability of replication profiles in individual cells. It can also be used to monitor the effect of DNA lesions on fork progression, arrest and restart. In this review, we propose standard DNA combing methods to analyze DNA replication in budding yeast and in human cells. We also show that 5-ethynyl-2'-deoxyuridine (EdU) can be used as a good alternative to BrdU for DNA combing analysis, as unlike halogenated nucleotides, it can be detected without prior denaturation of DNA.  相似文献   

9.
RMI1 is a member of an evolutionarily conserved complex composed of BLM and topoisomerase IIIα (TopoIIIα). This complex exhibits strand passage activity in vitro, which is likely important for DNA repair and DNA replication in vivo. The inactivation of RMI1 causes genome instability, including elevated levels of sister chromatid exchange and accelerated tumorigenesis. Using molecular combing to analyze DNA replication at the single-molecule level, we show that RMI1 is required to promote normal replication fork progression. The fork progression defect in RMI1-depleted cells is alleviated in cells lacking BLM, indicating that RMI1 functions downstream of BLM in promoting replication elongation. RMI1 localizes to subnuclear foci with BLM and TopoIIIα in response to replication stress. The proper localization of the complex requires a BLM-TopoIIIα-RMI1 interaction and is essential for RMI1 to promote recovery from replication stress. These findings reveal direct roles of RMI1 in DNA replication and the replication stress response, which could explain the molecular basis for its involvement in suppressing sister chromatid exchange and tumorigenesis.  相似文献   

10.
In this article, we study how intercalation-induced changes in chromatin and DNA topology affect chromosomal DNA replication using Xenopus egg extracts. Unexpectedly, intercalation by ethidium or doxorubicin prevents formation of a functional nucleus: although nucleosome formation occurs, DNA decondensation is arrested, membranous vesicles accumulate around DNA but do not fuse to form a nuclear membrane, active transport is abolished and lamins are found on chromatin, but do not assemble into a lamina. DNA replication is inhibited at the stage of initiation complex activation, as shown by molecular combing of DNA and by the absence of checkpoint activation. Replication of single-stranded DNA is not prevented. Surprisingly, in spite of the absence of nuclear function, DNA-replication proteins of pre-replication and initiation complexes are loaded onto chromatin. This is a general phenomenon as initiation complexes could also be seen without ethidium in membrane-depleted extracts which do not form nuclei. These results suggest that DNA or chromatin topology is required for generation of a functional nucleus, and activation, but not formation, of initiation complexes.  相似文献   

11.
In Xenopus early embryos, replication origins neither require specific DNA sequences nor is there an efficient S/M checkpoint, even though the whole genome (3 billion bases) is completely duplicated within 10-20 minutes. This leads to the “random-completion problem” of DNA replication in embryos, where one needs to find a mechanism that ensures complete, faithful, timely reproduction of the genome without any sequence dependence of replication origins. We analyze recent DNA replication data in Xenopus laevis egg extracts and find discrepancies with models where replication origins are distributed independently of chromatin structure. Motivated by these discrepancies, we have investigated the role that chromatin looping may play in DNA replication. We find that the loop-size distribution predicted from a wormlike-chain model of chromatin can account for the spatial distribution of replication origins in this system quantitatively. Together with earlier findings of increasing frequency of origin firings, our results can explain the random-completion problem. The agreement between experimental data (molecular combing) and theoretical predictions suggests that the intrinsic stiffness of chromatin loops plays a fundamental biological role in DNA replication in early-embryo Xenopus in regulating the origin spacing.  相似文献   

12.
In Xenopus early embryos, replication origins neither require specific DNA sequences nor is there an efficient S/M checkpoint, even though the whole genome (3 billion bases) is completely duplicated within 10-20 minutes. This leads to the "random-completion problem" of DNA replication in embryos, where one needs to find a mechanism that ensures complete, faithful, timely reproduction of the genome without any sequence dependence of replication origins. We analyze recent DNA replication data in Xenopus laevis egg extracts and find discrepancies with models where replication origins are distributed independently of chromatin structure. Motivated by these discrepancies, we have investigated the role that chromatin looping may play in DNA replication. We find that the loop-size distribution predicted from a wormlike-chain model of chromatin can account for the spatial distribution of replication origins in this system quantitatively. Together with earlier findings of increasing frequency of origin firings, our results can explain the random-completion problem. The agreement between experimental data (molecular combing) and theoretical predictions suggests that the intrinsic stiffness of chromatin loops plays a fundamental biological role in DNA replication in early-embryo Xenopus in regulating the origin spacing.  相似文献   

13.

Background  

DNA replication is a fundamental biological process during S phase of cell division. It is initiated from several hundreds of origins along whole chromosome with different firing efficiencies (or frequency of usage). Direct measurement of origin firing efficiency by techniques such as DNA combing are time-consuming and lack the ability to measure all origins. Recent genome-wide study of DNA replication approximated origin firing efficiency by indirectly measuring other quantities related to replication. However, these approximation methods do not reflect properties of origin firing and may lead to inappropriate estimations.  相似文献   

14.
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.  相似文献   

15.

Background

Eukaryotic cells seem unable to monitor replication completion during normal S phase, yet must ensure a reliable replication completion time. This is an acute problem in early Xenopus embryos since DNA replication origins are located and activated stochastically, leading to the random completion problem. DNA combing, kinetic modelling and other studies using Xenopus egg extracts have suggested that potential origins are much more abundant than actual initiation events and that the time-dependent rate of initiation, I(t), markedly increases through S phase to ensure the rapid completion of unreplicated gaps and a narrow distribution of completion times. However, the molecular mechanism that underlies this increase has remained obscure.

Methodology/Principal Findings

Using both previous and novel DNA combing data we have confirmed that I(t) increases through S phase but have also established that it progressively decreases before the end of S phase. To explore plausible biochemical scenarios that might explain these features, we have performed comparisons between numerical simulations and DNA combing data. Several simple models were tested: i) recycling of a limiting replication fork component from completed replicons; ii) time-dependent increase in origin efficiency; iii) time-dependent increase in availability of an initially limiting factor, e.g. by nuclear import. None of these potential mechanisms could on its own account for the data. We propose a model that combines time-dependent changes in availability of a replication factor and a fork-density dependent affinity of this factor for potential origins. This novel model quantitatively and robustly accounted for the observed changes in initiation rate and fork density.

Conclusions/Significance

This work provides a refined temporal profile of replication initiation rates and a robust, dynamic model that quantitatively explains replication origin usage during early embryonic S phase. These results have significant implications for the organisation of replication origins in higher eukaryotes.  相似文献   

16.
There is rising evidence that cancer development is associated from its earliest stages with DNA replication stress, a major source of spontaneous genomic instability. However, the origin of these replication defects has remained unclear. We have investigated the consequences of upregulating error-prone DNA polymerases (pol) beta and kappa on chromosomal DNA replication. These enzymes are misregulated in different types of cancers and induce major chromosomal instabilities when overexpressed at low levels. Here, we have used DNA combing to show that a moderate overexpression of pol beta or pol kappa is sufficient to impede replication fork progression and to promote the activation of additional replication origins. Interestingly, alterations of the normal replication program induced by excess error-prone polymerases were not detected by the replication checkpoint. We therefore propose that upregulation of error-prone DNA polymerases induces a checkpoint-blind replication stress that contributes to genomic instability and to cancer development.  相似文献   

17.
DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the temporal program is stochastic at the level of single origins and replication clusters. It is unclear how the replication checkpoint inhibits late origins but permits origin activation in early clusters. Here, we analyze the role of Chk1 in the replication program in sperm nuclei replicating in Xenopus egg extracts by a combination of experimental and modelling approaches. After Chk1 inhibition or immunodepletion, we observed an increase of the replication extent and fork density in the presence or absence of external stress. However, overexpression of Chk1 in the absence of external replication stress inhibited DNA replication by decreasing fork densities due to lower Cdk2 kinase activity. Thus, Chk1 levels need to be tightly controlled in order to properly regulate the replication program even during normal S phase. DNA combing experiments showed that Chk1 inhibits origins outside, but not inside, already active clusters. Numerical simulations of initiation frequencies in the absence and presence of Chk1 activity are consistent with a global inhibition of origins by Chk1 at the level of clusters but need to be combined with a local repression of Chk1 action close to activated origins to fit our data.  相似文献   

18.
Chromosomal DNA replication is a fundamental process in the transmission of genetic information through generations. While the molecular mechanism of DNA replication has been studied for a long time, knowledge regarding this process in eukaryotic cells has advanced rapidly in the past 20 years. Yeast genetics contributed profoundly to this rapid advancement. Reverse genetics and genetic screenings identified all genes encoding replication proteins in budding yeast. Moreover, the genetic interactions that were used in screenings and analyses provided an insight into the molecular mechanism of chromosomal DNA replication. Further studies showed that complicated but sophisticated mechanisms govern chromosomal DNA replication. The retrospective view of the genetic approaches used to elucidate DNA replication in eukaryotes, together with current knowledge, tell us the reasons why some of the genetic screenings are successful, and also provide ideas for future directions.  相似文献   

19.
To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.  相似文献   

20.
Molecular combing (MC) yields preparations where individual DNA molecules are uniformly stretched and are parallel to each other. Fluorescence in situ hybridization on such preparations allows an exact mapping of DNA sequences, and pulsed incorporation of halogenated deoxyuridine analogs and their detection using fluorochrome-conjugated antibodies makes it possible to visualize replication. The MC technique was adapted for studying DNA replication in isolated Drosophila melanogaster organs, and it was checked whether a mutation of the Suppressor of UnderReplication (SuUR) gene directly affected the replication fork rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号