首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The initial and rate determining step in the mechanism of fatty acid desaturases has been proposed to be breakage of one of the C---H bonds at the site of the incipient double bond. This has been investigated and supported for a number of eukaryotic fatty acid desaturases through the use of kinetic isotope effect experiments with deuterated substrates. In order to probe the reaction catalyzed by the cyanobacterial Δ9 desaturase and compare it to the eukaryotic desaturases, the desC gene of Spirulina platensis, strain C1 (Arthrospira sp. PCC 9438) was expressed in a desaturase mutant of baker's yeast. Kinetic isotope effects were performed by culturing yeast transformants with deuterated thia-substituted stearic acids. A large kinetic isotope effect was found for the 9 position, in qualitative agreement with results from eukaryotic desaturases.  相似文献   

3.
4.
5.
ABSTRACT A cDNA encoding pheromone Δ9 acyl-CoA desaturase, Slit KPSE was isolated from sex pheromone gland of the tobacco cutworm, Spodoptera litura which uses a diene unsaturated fatty acid (UFA) derivative, Z9E11-14 : 2 as a major pheromone component. The fulllength open reading frame coding region of Slit KPSE was inserted in a yeast shuttle vector, YEpOLEX, and two kinds of yeast ( Saccharomyces cerevisiae ) mutant strains were transformed with the recombinant vector. In the desaturase-deficient ole 1 strain, Slit KPSE expressed a complementary enzyme producing two kinds of diene UFAs, more 9–16 : 1 and less 9–18 : 1 at a ratio of 1 : 0.74 exhibiting a typical functional characteristics as one of the pheromone Δ9 acyl-CoA desaturase lineage group, KPSE, but no Δ9 14C monoene was detectable because of too small amount of 14C saturated fatty acid precursor to be reliably used by Slit KPSE in the transformed cells. However, the another transformed yeast strain elo 1 which is deficient of elongase 1, an enzyme converting 14C to 16C hydrocarbon substrate, was supplemented with some myristic acid (14 : 0) in the medium, and produced a significant amount of 9–14 : 1 in due to a much enhanced level of the 14C substrate suggesting that Slit KPSE may be responsible for making the Δ9 double bond on the diene pheromone component.  相似文献   

6.
Di-nor-benzofuran neolignan aldehydes, Δ7-3,4-methylenedioxy-3′-methoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal A) 1, Δ7-3,4,5,3′-tetramethoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal B) 2, and macrophyllin-type bicyclo[3.2.1]octanoid neolignans (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-5′-methoxy-3,4-methylenedioxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol A) 3, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5′-trimethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol B) 4, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5,5′-tetramethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol C) 5, as well as 2′-epi-guianin 6 and (+)-licarin B 7, were isolated and characterized from leaves of Ocotea macrophylla (Lauraceae). The structures and configuration of these compounds were determined by extensive spectroscopic analyses. Inhibition of platelet activating factor (PAF)-induced aggregation of rabbit platelets were tested with neolignans 1–7. Although compound 6 was the most potent PAF-antagonist, compounds 3–5 showed some activity.  相似文献   

7.
Effect of chlorophenols on the membrane lipids of bacterial cells   总被引:1,自引:0,他引:1  
Chlorophenols, widespread soil and water contaminants and often degradation products of some pesticides, are a potential stress factor for survival of environmental bacteria. The effect of pentachlorophenol (PCP) and 2,4-chlorophenol (2,4-CP) on the growth, amount of lipid, and fatty acid composition in the membrane lipids was examined in a strain of the bacterium Kocuria varians, able to degrade chlorophenols. The index of fatty acid unsaturation in two main membrane lipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) decreased in the presence of chlorophenols. Transformation of stearic acid into oleic acid was significantly increased by PCP addition only in PE, but conversion of oleic acid into linoleic acid was blocked by PCP and 2,4-CP in both PC and PE. This observation may indicate that while Δ9 desaturase was sensitive mainly to 2,4-CP, activity of Δ12 desaturase was inhibited by both PCP and 2,4-CP.  相似文献   

8.
Cat's claw (Doxantha unguis-cati L.) vine accumulates nearly 80% palmitoleic acid (16:1Δ9) plus cis-vaccenic acid (18:1Δ11) in its seed oil. To characterize the biosynthetic origin of these unusual fatty acids, cDNAs for acyl-acyl carrier protein (acyl-ACP) desaturases were isolated from developing cat's claw seeds. The predominant acyl-ACP desaturase cDNA identified encoded a polypeptide that is closely related to the stearoyl (Δ9–18:0)-ACP desaturase from castor (Ricinis communis L.) and other species. Upon expression in Escherichia coli, the cat's claw polypeptide functioned as a Δ9 acyl-ACP desaturase but displayed a distinct substrate specificity for palmitate (16:0)-ACP rather than stearate (18:0)-ACP. Comparison of the predicted amino acid sequence of the cat's claw enzyme with that of the castor Δ9–18:0-ACP desaturase suggested that a single amino acid substitution (L118W) might account in large part for the differences in substrate specificity between the two desaturases. Consistent with this prediction, conversion of leucine-118 to tryptophan in the mature castor Δ9–18:0-ACP desaturase resulted in an 80-fold increase in the relative specificity of this enzyme for 16:0-ACP. The alteration in substrate specificity observed in the L118W mutant is in agreement with a crystallographic model of the proposed substrate-binding pocket of the castor Δ9–18:0-ACP desaturase.  相似文献   

9.
Strains of Saccharomyces cerevisiae bearing the ole1 mutation are defective in unsaturated fatty acid (UFA) synthesis and require UFAs for growth. A previously isolated yeast genomic fragment complementing the ole1 mutation has been sequenced and determined to encode the delta 9 fatty acid desaturase enzyme by comparison of primary amino acid sequence to the rat liver stearoyl-CoA desaturase. The OLE1 structural gene encodes a protein of 510 amino acids (251 hydrophobic) having an approximate molecular mass of 57.4 kDa. A 257-amino acid internal region of the yeast open reading frame aligns with and shows 36% identity and 60% similarity to the rat liver stearoyl-CoA desaturase protein. This comparison disclosed three short regions of high consecutive amino acid identity (greater than 70%) including one 11 of 12 perfect residue match. The predicted yeast enzyme contains at least four potential membrane-spanning regions and several shorter hydrophobic regions that align exactly with similar sequences in the rat liver protein. An ole1 gene-disrupted yeast strain was transformed with a yeast-rat chimeric gene consisting of the promoter region and N-terminal 27 codons of OLE1 fused to the rat desaturase coding sequence. Fusion gene transformants displayed near equivalent growth rates and modest lipid composition changes relative to wild type yeast control implying a significant conservation of delta 9 desaturase tertiary structure and efficient interaction between the rat desaturase and yeast cytochrome b5.  相似文献   

10.
Monounsaturated alkenes are present in the cuticular waxes of diverse plants and are thought to play important roles in their interactions with abiotic and biotic factors. Arabidopsis (Arabidopsis thaliana) leaf wax has been reported to contain alkenes; however, their biosynthesis has not been investigated to date. Here, we found that these alkenes have mainly ω-7 and ω-9 double bonds in characteristically long hydrocarbon chains ranging from C33 to C37. A screening of desaturase-deficient mutants showed that a single desaturase belonging to the acyl-CoA desaturase (ADS) family, previously reported as ADS4.2, was responsible for introducing double bonds en route to the wax alkenes. ADS4.2 was highly expressed in young leaves, especially in trichomes, where the alkenes are known to accumulate. The enzyme showed strong activity on acyl substrates longer than C32 and ω-7 product regio-specificity when expressed in yeast (Saccharomyces cerevisiae). Its endoplasmic reticulum localization further confirmed that ADS4.2 has access to very-long-chain fatty acyl-CoA substrates. The upstream biosynthesis pathways providing substrates to ADS4.2 and the downstream reactions forming the alkene products in Arabidopsis were further clarified by alkene analysis of mutants deficient in other wax biosynthesis genes. Overall, our results show that Arabidopsis produces wax alkenes through a unique elongation–desaturation pathway, which requires the participation of ADS4.2.

Arabidopsis produces cuticular alkenes through a unique elongation–desaturation pathway requiring the acyl-CoA desaturase ADS4.2.  相似文献   

11.
12.
We have studied the acetylenic fatty acid 20:2Δ8a, 11a (eicosadiynoic acid, EDYA). It was found that this compound acts as an inhibitor of several steps in the production of icosanoids from arachidonic acid. First, the compound was shown to inhibit arachidonate uptake by platelets. Second, using a detergent solubilized preparation from calf brain, EDYA was found to inhibit both the arachidonoyl and the non-specific long chain acyl-CoA synthetase, which convert arachidonate to its CoA ester. Third, the compound decreased the conversion of dihomo gamma linolenic acid to arachidonate in the mouse fibrosarcoma HSDM1C1 cell line, acting as an apparent Δ5 desaturase inhibitor. Finally, EDYA (50 uM) inhibited cyclooxygenase activity. The compound was not toxic to cultured cells. Cells were grown for months in tissue culture medium at concentrations as high as 50 uM, with no morphologic changes by light microscopy and no prolongation of the doubling time over untreated cells. Our findings with this compound indicate that it limits icosanoid production by inhibiting cyclooxygenase and also by limiting arachidonate uptake, activation, and production from precursor fatty acids.  相似文献   

13.
茄科雷尔氏菌(Ralstonia solanacearum)是一种危害严重的土传植物致病菌,其宿主范围广泛,在世界各地严重影响重要经济作物的生产.研究茄科雷尔氏菌的生理特性,探索其致病机理,有利于研发防治青枯病的技术与方法.脂肪酸是细菌细胞重要的组成物质,但是茄科雷尔氏菌脂肪酸合成的机制尚不清晰.本文以茄科雷尔氏菌GMI1000为材料,鉴定了该菌的脂酰Co A脱饱和酶和环丙烷脂肪酸合成酶,并分析了这两种酶在不饱和脂肪酸和环丙烷脂肪酸合成中的作用.结果显示,茄科雷尔氏菌RSc2450编码脂酰Co A脱饱和酶,参与其不饱和脂肪酸合成,但是该菌还存在其他不饱和脂肪酸合成途径.同时发现在茄科雷尔氏菌编码两个可能的环丙烷脂肪酸合成酶蛋白质中,仅有Cfa1(RSc0776)参与了该菌环丙烷脂肪酸的合成,并在低p H和高渗透压的耐受中起作用.该研究结果为深入研究茄科雷尔氏菌脂肪酸合成代谢特点及致病机理奠定了基础.  相似文献   

14.
cDNA clones encoding cytochrome b5 fusion desaturases were isolated from Primula cortusoides L. and Primula luteola Ruprecht, species previously shown to preferentially accumulate either n−6 or n−3 Δ6-desaturated fatty acids, respectively. Functional characterisation of these desaturases in yeast revealed that the recombinant Primula enzymes displayed substrate preferences, resulting in the predominant synthesis of either γ-linolenic acid (n−6) or stearidonic acid (n−3). Independent expression of the two Primula desaturases in transgenic Arabidopsis thaliana confirmed these results, with γ-linolenic acid and stearidonic acid accumulating in both leaf and seed tissues to different levels, depending on the substrate specificity of the desaturase. Targeted lipid analysis of transgenic Arabidopsis lines revealed the presence of Δ6-desaturated fatty acids in the acyl-CoA pools of leaf but not seed tissue. The implications for the transgenic synthesis of C20 polyunsaturated fatty acids via the elongation of Δ6-desaturated fatty acids are discussed, as is the potential of using Primula desaturases in the synthesis of C18 n−3 polyunsaturated fatty acids such as stearidonic acid.  相似文献   

15.
Long-chain acyl-coenzyme A (CoA) synthetases (LACSs) activate free fatty acids to acyl-CoA thioesters and as such play critical roles in fatty acid metabolism. This important class of enzymes factors prominently in several fatty acid-derived metabolic pathways, including phospholipid, triacylglycerol, and jasmonate biosynthesis and fatty acid beta-oxidation. In an effort to better understand the factors that control fatty acid metabolism in oilseeds, we have sought to identify and characterize genes that encode LACSs in Arabidopsis. Nine cDNAs were identified, cloned, and tested for their ability to complement a LACS-deficient strain of yeast (Saccharomyces cerevisiae). Seven of the nine successfully restored growth, whereas two cDNAs encoding putative peroxisomal isoforms did not. Lysates from yeast cells overexpressing each of the nine cDNAs were active in LACS enzyme assays using oleic acid as a substrate. The substrate specificities of the enzymes were determined after overexpression in LACS-deficient Escherichia coli. Most of the LACS enzymes displayed highest levels of activity with the fatty acids that make up the common structural and storage lipids in Arabidopsis tissues. Analysis of the tissue-specific expression profiles for these genes revealed one flower-specific isoform, whereas all others were expressed in various tissues throughout the plant. These nine cDNAs are thought to constitute the entire LACS family in Arabidopsis, and as such, will serve as powerful tools in the study of acyl-CoA metabolism in oilseeds.  相似文献   

16.
The first committed step in the -oxidation of fatty acids is catalyzed by the enzyme acyl-CoA oxidase (ACOX), which oxidizes a fatty acyl-CoA to a 2-trans-enoyl-CoA. To understand the role of -oxidation during seedling growth in soybean, two ACOX cDNAs were isolated by screening a seedling library with a DNA fragment obtained by RT-PCR by using degenerate oligonucleotides. The two cDNAs (ACX1;1 and ACX1;2) are 86% identical to each other at the nucleotide and the amino acid level. Their deduced amino acid sequences share significant homology with known acyl-CoA oxidases, including the conserved CGGHGY motif, a putative flavin mononucleotide binding site. In both sequences, the last three amino acids, ARL, represent a putative peroxisome targeting signal. The mRNA and protein of both cDNAs accumulated in all seedling tissues, with relatively stronger expression in the growing seedling axis and hypocotyl, and weaker expression in the cotyledon. Immunolocalization studies indicated that the two proteins were localized in the phloem cells of hypocotyl tissue. The two cDNAs were expressed in Escherichia coli and shown to possess acyl-CoA oxidase activity. With fatty acyl-CoA substrates of varying chain lengths, it was demonstrated that both ACX1;1 and ACX1;2 have broad substrate specificities (C8–C18). The stronger expression of ACX1;1 and ACX1;2 in the axis and hypocotyl tissue, the weaker expression in the oil-rich cotyledon tissue, and the broad substrate specificities suggest that the two acyl-CoA oxidases might play a general house-keeping role during soybean seedling growth, such as the turnover of membrane lipids.  相似文献   

17.
Desaturation of fatty acids is a key reaction in the biosynthesis of moth sex pheromones. The main component of Spodoptera littoralis sex pheromone blend is produced by the action of Δ11 and Δ9 desaturases. In this article, we report on the cloning of four desaturase-like genes in this species: one from the fat body (Sls-FL1) and three (Sls-FL2, Sls-FL3 and Sls-FL4) from the pheromone gland. By means of a computational/phylogenetic method, as well as functional assays, the desaturase gene products have been characterized. The fat body gene expressed a Δ9 desaturase that produced (Z)-9-hexadecenoic and (Z)-9-octadecenoic acids in a (1:4.5) ratio, whereas the pheromone gland Sls-FL2 expressed a Δ9 desaturase that produced (Z)-9-hexadecenoic and (Z)-9-octadecenoic acids in a (1.5:1) ratio. Although both Δ9 desaturases produced (Z)-9-tetradecenoic acid from myristic acid, transformed yeast grown in the presence of a mixture of myristic and (E)-11-tetradecenoic acids produced (Z,E)-9,11-tetradecadienoic acid, but not (Z)-9-tetradecenoic acid. The Sls-FL3 gene expressed a protein that produced a mixture of (E)-11-tetradecenoic, (Z)-11-tetradecenoic, (Z)-11-hexadecenoic and (Z)-11-octadecenoic acids in a 5:4:60:31 ratio. Despite having all the characteristics of a desaturase gene, no function could be found for Sls-FL4.  相似文献   

18.
Mutants of Saccharomyces cerevisiae defective in acyl-CoA synthetase (EC 6.2.1.3) were isolated. The mutants were concentrated by the radiation-suicide technique with the use of tritiated palmitic acid. Selection of the mutants was based on the premise that acyl-CoA synthetase activity would become indispensable when yeast cells in which fatty acid synthesis de novo is blocked are grown in a medium supplemented with fatty acid. The mutant strains isolated exhibited low acyl-CoA synthetase activity in vitro. Furthermore, they accumulated markedly more of the incorporated palmitic acid in the nonesterified form than did the wild- type strain. Some of the mutants showed thermosensitive acyl-CoA synthetase activity, indicating a mutation of the structural gene of the enzyme. Genetic studies on these mutants indicated that their phenotype resulted from a single, recessive mutation of a nuclear gene, designated faa 1 (fatty acid activation).  相似文献   

19.
In this report, we describe the structural and functional analyses of four acyl-CoA desaturase-encoding cDNAs that we isolated from RNA expressed in the pheromone gland of the corn earworm, Helicoverpa zea. We deduced the homology relationships of the encoded proteins, designated HzPGDs1, HzPGDs2, HzPGDs3 and HzFBDs, to each other and to previously described desaturases of the cabbage looper moth, Trichoplusia ni, the fly, Drosophila melanogaster, and other more distantly related organisms. We also isolated genomic DNA fragments of the four H. zea desaturase-encoding genes, determined the locations of introns present in them, and compared them to conserved intron positions in reported desaturase genes of other species. We measured the levels of the four desaturase mRNAs in H. zea pheromone glands and larval fat bodies by RT-PCR. We established the functional identities of the deduced proteins HzPGDs1 and HzPGDs2, encoded by the two desaturase mRNAs that are differentially and abundantly expressed in pheromone glands of sexually mature adult H. zea females, by functional expression of their encoding cDNAs in a desaturase-deficient mutant, ole1, of the yeast Saccharomyces cerevisiae. We compared the unique unsaturated fatty acid profiles of HzPGDs1- and HzPGDs2-expressing transformants to those of strains expressing previously described Delta11 and Delta9 desaturases of T. ni.  相似文献   

20.
Biosynthesis of polyunsaturated fatty acids in C. elegans is initiated by the introduction of a double bond at the delta9 position of a saturated fatty acid. We identified three C. elegans fatty acid desaturase genes related to the yeast delta9 desaturase OLE1 and the rat stearoyl-CoA desaturase SCD1. Heterologous expression of all three genes rescues the fatty acid auxotrophy of the yeast delta9 desaturase mutant ole1. Examination of the fatty acid composition of the transgenic yeast reveals striking differences in the substrate specificities of these desaturases. Two desaturases, FAT-6 and FAT-7, readily desaturate stearic acid (18:0) and show less activity on palmitic acid (16:0). In contrast, the other desaturase, FAT-5, readily desaturates palmitic acid (16:0), but shows nearly undetectable activity on the common delta9 substrate stearic acid. This is the first report of a palmitoyl-CoA-specific membrane fatty acid desaturase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号