首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular hybridization studies were carried out by using a [3H]complementary DNA (cDNA) probe to compare the endogenous type C retrovirus of rhesus monkeys (MMC-1) with other known retroviruses and related sequences in various primate DNAs. The genomic RNA of the endogenous type C retrovirus of stumptail monkeys (MAC-1) was found to be highly related to the MMC-1 cDNA probe, whereas the other retroviral RNAs tested showed no homology. Related sequences were found in Old World monkey DNAs and to a lesser extent in gorilla dn chimpanzee DNAs. No homology was detected between MMC-1 cDNA and DNA of gibbon, orangutan, or human origin. Restriction endonuclease analysis of genomic DNA indicated that many of the several hundred sequences related to MMC-1 in rhesus monkey DNA differed from that integrated into DNA of infected canine cells. Gorilla and chimpanzee DNAs contained a specific restriction endonuclease fragment of the MMC-1 genome.  相似文献   

3.
Endogenous retrovirus-related sequences exist within the normal genomic DNA of all eukaryotes, and these endogenous sequences have been shown to be important to the nature and biology of related exogenous retroviruses and may also play a role in cellular functions. To date, no endogenous sequences related to human immunodeficiency virus type 1 (HIV-1) have been reported. Herein we describe the first report of the presence of nucleotide sequences related to HIV-1 in human, chimpanzee, and rhesus monkey DNAs from normal uninfected individuals. We also present the isolation and characterization of two of these endogenous HIV-1-related sequences, EHS-1 and EHS-2. With use of low-stringency Southern blot hybridization, complex banding patterns were detected in human DNA with 5' and 3' HIV-1-derived probes. When an HIV-1 env region probe was used, we detected a less complex, conserved banding pattern in human DNA as well as a related but distinct banding pattern in chimpanzee and rhesus monkey DNAs. EHS-1 and -2 were cloned from normal human genomic DNA libraries by using the env region probe. Clone EHS-1 shows sequence similarity with the domain of the envelope cellular protease cleavage site of HIV-1, while EHS-2 has sequence similarity to the overlapping reading frame for Rev and gp41. Stringent hybridization of EHS-1 back to primate genomic DNA indicates two distinct EHS-1 loci in normal human DNA, an identical band pattern in chimpanzee DNA, and a single locus in rhesus monkey DNA. Likewise, EHS-2 is present as a single highly conserved locus in all three species. An oligonucleotide derived from EHS-2 across a region of near identity to HIV-1 detects a complex banding pattern in all primates tested similar to that seen with the 3' HIV-1 probe. These data suggest that most of the HIV-1-related sequences identified in primate DNA share a common core of nucleic acid sequence found in both EHS-2 and rev and that some of these HIV-1-related sequences have additional larger regions of sequence similarity to HIV-1.  相似文献   

4.
The nucleotide sequences related to the 3'-terminal protion of retrovirus genomic RNA have been detected in the DNA of animals, including humans. The DNA complementary to the 400 to 700 nucleotides from the 3'-terminal end of retrovirus RNA (cDNA3'), which contains the enriched conserved region, was hybridized with DNA from a variety of animal cells. Under the conditions of annealing in 0.72 M NaCl at 67 degrees C and hydroxyapatite chromatography at 55 degrees C, 20 to 50% of the radioactivity of the cDNA3' prepared from two retroviruses, a murine Rauscher virus (RLV) and a baboon virus (M7), annealed with normal cellular DNA of animals, including human tissue. The thermal denaturation profile revealed considerable mismatching between the duplex of the cDNA3' and human DNA, cDNA3' of retroviruses is most homologous to cellular DNA of the host species of origin and is less homologous to cellular DNA of species that are distant in the phylogeny of the host species. The conservation and evolution of nucleotide sequences related to the 3' end of retrovirus genomes in animal DNAs, including humans, suggest that the sequences may have important functions.  相似文献   

5.
Recombination between viral and cellular genes can give rise to new strains of retroviruses. For example, Rous-associated virus 61 (RAV-61) is a recombinant between the Bryan high-titer strain of Rous sarcoma virus (RSV) and normal pheasant DNA. Nucleic acid hybridization techniques were used to study the genome of RAV-61 and another RAV with subgroup F specificity (RAV-F) obtained by passage of RSV-RAV-0 in cells from a ring-necked pheasant embryo. The nucleotide sequences acquired by these two independent isolates of RAV-F that were not shared with the parental virus comprised 20 to 25% of the RAV-F genomes and were indistinguishable by nucleic acid hybridization. (In addition, RAV-F genomes had another set of nucleotide sequences that were homologous to some pheasant nucleotide sequences and also were present in the parental viruses.) A specific complementary DNA, containing only nucleotide sequences complementary to those acquired by RAV-61 through recombination, was prepared. These nucleotide sequences were pheasant derived and were not present in the genomes of reticuloendotheliosis viruses, pheasant viruses, and avian leukosis-sarcoma viruses of subgroups A, B, C, D, and E. They were partially endogenous, however, to avian DNA other than pheasant. The fraction of these nucleotide sequences present in other avian DNAs generally paralleled the genetic relatedness of these avian species to pheasants. However, there was a high degree of homology between these pheasant nucleotide sequences and related nucleotide sequences in the DNA of normal chickens as indicated by the identical melting profiles of the respective hybrids.  相似文献   

6.
The genomes of Old-World, New-World, and prosimian primates contain members of a large class of highly repetitive DNAs that are related to one another and to component DNA of the African green monkey by their sequence homologies and restriction site periodicities. The members, of this class of highly repetitive DNAs are termed the alphoid DNAs, after the prototypical member, component of the African green monkey which was the first such DNA to be identified (Maio, 1971) and sequenced (Rosenberg et al., 1978). The alphoid DNAs appear to be uniquely primate sequences. — From the restriction enzyme cleavage patterns and Southern blot hybridizations under different stringency conditions, the alphoid DNAs comprise multiple sequence families exhibiting varying degrees of homology to component DNA. They also share common elements in their restriction site periodicities (172 · n base-pairs), in the long-range organization of their repeating units, and in their banding behavior in CsCl and Cs2SO4 buoyant density gradients, in which they band within the bulk DNA as cryptic repetitive components. — In the three species from the Family Cercopithecidae examined, the alphoid DNAs represent the most abundant, tandemly repetitive sequence components, comprising about 24% of the African green monkey genome and 8 to 10% of the Rhesus monkey and baboon genomes. In restriction digests, the bulk of the alphoid DNAs among the Cercopithecidae appeared quantitatively reduced to a simple series of arithmetic segments based on a 172 base-pair (bp) repeat. In contrast with these simple restriction patterns, complex patterns were observed when human alphoid DNAs were cleaved with restriction enzymes. Detailed analysis revealed that the human genome contains multiple alphoid sequence families which differ from one another both in their repeat sequence organization and in their degree of homology to the African green monkey component DNA. — The finding of alphoid sequences in other Old-World primate families, in a New-World monkey, and in a prosimian primate attests to the antiquity of these sequences in primate evolution and to the sequence conservatism of a large class of mammalian highly repetitive DNA. In addition, the relative conservatism exhibited by these sequences may distinguish the alphoid DNAs from more recently evolved highly repetitive components and satellite DNAs which have a more restricted taxonomical distribution.  相似文献   

7.
The DNA polymerase from the Mason-Pfizer monkey virus (M-PMV), an RNA tumor virus not typical type-C or type-B, has been purified a thousand-fold over the original crude viral suspension. This purified enzyme is compared to a similarly purified DNA polymerase from the primate woolly monkey virus, a type-C virus. The two enzymes have similar template specificities but differ in their requirements for optimum activity. Both DNA polymerases have a pH optimum of 7.3 in Tris buffer. M-PMV enzyme has maximum activity with 5 mM Mg(2+) and 40 mM potassium chloride, whereas the woolly monkey virus optima are 100 mM potassium chloride with 0.8 mM Mn(2+). The apparent molecular weight of the M-PMV enzyme is approximately 110,000, whereas the woolly monkey virus polymerase is approximately 70,000. The biochemical properties of these two enzymes were also compared to a similarly purified enzyme from a type-C virus from a lower mammal (Rauscher murine leukemia virus). The results show that more similarity exists between the DNA polymerases from viruses of the same type (type-C), than between the polymerases from viruses of different types but from closely related species.  相似文献   

8.
The DNAs of different members of the Papillomavirus genus of papovaviruses were analyzed for nucleotide sequence homology. Under standard hybridization conditions (Tm - 28 degrees C), no homology was detectable among the genomes of human papillomavirus type 1 (HPV-1), bovine papillomavirus type 2 (BPV-2), or cottontail rabbit (Shope) papillomavirus (CRPV). However, under less stringent conditions (i.e., Tm - 43 degrees C), stable hybrids were formed between radiolabeled DNAs of CRPV, BPV-1, or BPV-2 and the HindIII-HpaI A, B, and C fragments of HPV-1. Under these same conditions, radiolabeled CRPV and HPV-1 DNAs formed stable hybrids with HincII B and C fragments of BPV-2 DNA. These results indicate that there are regions of homology with as much as 70% base match among all these papillomavirus genomes. Furthermore, unlabeled HPV-1 DNA competitively inhibited the specific hybridization of radiolabeled CRPV DNA to bpv-2 DNA fragments, indicating that the homologous DNA segments are common among these remotely related papillomavirus genomes. These conserved sequences are specific for the Papillomavirus genus of papovaviruses as evidenced by the lack of hybridization between HPV-1 DNA and either simian virus 40 or human papovavirus BK DNA under identical conditions. These results indicate a close evolutionary relationship among the papillomaviruses and further establish the papillomaviruses and polyoma viruses as distinct genera.  相似文献   

9.
Nature and distribution of feline sarcoma virus nucleotide sequences.   总被引:34,自引:19,他引:15       下载免费PDF全文
The genomes of three independent isolates of feline sarcoma virus (FeSV) were compared by molecular hybridization techniques. Using complementary DNAs prepared from two strains, SM- and ST-FeSV, common complementary DNA'S were selected by sequential hybridization to FeSV and feline leukemia virus RNAs. These DNAs were shown to be highly related among the three independent sarcoma virus isolates. FeSV-specific complementary DNAs were prepared by selection for hybridization by the homologous FeSV RNA and against hybridization by fline leukemia virus RNA. Sarcoma virus-specific sequences of SM-FeSV were shown to differ from those of either ST- or GA-FeSV strains, whereas ST-FeSV-specific DNA shared extensive sequence homology with GA-FeSV. By molecular hybridization, each set of FeSV-specific sequences was demonstrated to be present in normal cat cellular DNA in approximately one copy per haploid genome and was conserved throughout Felidae. In contrast, FeSV-common sequences were present in multiple DNA copies and were found only in Mediterranean cats. The present results are consistent with the concept that each FeSV strain has arisen by a mechanism involving recombination between feline leukemia virus and cat cellular DNA sequences, the latter represented within the cat genome in a manner analogous to that of a cellular gene.  相似文献   

10.
Gardner-Rasheed feline sarcoma virus (GR-FeSV) is an acute transforming retrovirus which encodes a gag-onc polyprotein possessing an associated tyrosine kinase activity. The integrated form of this virus, isolated in the Charon 21A strain of bacteriophage lambda, demonstrated an ability to transform NIH/3T3 cells at high efficiency upon transfection. Foci induced by GR-FeSV DNA contained rescuable sarcoma virus and expressed GR-P70, the major GR-FeSV translational product. The localization of long-terminal repeats within the DNA clone made it possible to establish the length of the GR-FeSV provirus as 4.6 kilobase pairs. The analysis of heteroduplexes formed between lambda feline leukemia virus (FeLV) and lambda GR-FeSV DNAs revealed the presence of a 1,700-base-pair FeLV unrelated segment, designated v-fgr, within the GR-FeSV genome. The size of this region was sufficient to encode a protein of approximately 68,000 daltons and was localized immediately downstream of the FeLV gag gene coding sequences present in GR-FeSV. Thus, it is likely that this 1.7-kilobase-pair stretch encodes the onc moiety of GR-P70. Utilizing probes representing v-fgr, we detected homologous sequences in the DNAs of diverse vertebrate species, implying that v-fgr originated from a well-conserved cellular gene. The number of cellular DNA fragments hybridized by v-fgr-derived probes indicated either that proto-fgr is distributed over a very large region of cellular DNA or represents a family of related genes. By molecular hybridization, v-fgr was not directly related to the onc genes of other known retroviruses having associated tyrosine kinase activity.  相似文献   

11.
The squirrel monkey (Saimiri,sciureus), a New World primate, contains multiple copies of endogenous type D retroviral gene sequences in the cellular DNA of all its tissues. Gene sequences partially homologous to these type D virus genes are also found in the cellular DNA of normal tissues of the New World carnivore, the skunk (Mephitis,mephitis and Spilogale,putorius). We there-fore conclude that this class of viruses has, under natural conditions, been transmitted between the germ lines of these evolutionarily distant species. The example of interspecies transmission described here is the first that has been described among New World species and also the first that has been demonstrated for retroviruses other than type C viruses.  相似文献   

12.
The complete nucleotide sequence of Rhesus monkey (Macaca mulatta) pepsinogen A (PGA) cDNA was determined from two partially overlapping cDNA clones, covering the whole coding sequence and part of the flanking sequences. The nucleotide and deduced amino acid sequences were compared to known PGA sequences from other species. The degree of similarity with human PGA appeared to be 96% at the nucleotide sequence level and 94% at the amino acid sequence level. In the coding region the divergence was highest in the activation peptide. The amino acid sequence similarity between Japanese monkey (Macaca fuscata) PGA and Rhesus monkey PGA was shown to be 99%. Using the cDNA as probe in Southern hybridization of EcoRI-digested human and Rhesus monkey genomic DNAs, PGA patterns with inter-individual differences were observed. The hybridization patterns are compatible with the existence of a PGA multigene family in both species.  相似文献   

13.
Three species of unintegrated viral DNAs were found in permissive cells infected with baboon type C virus. The major species was a 9.0-kilobase (kb) linear DNA that was infectious. A restriction endonuclease map of this DNA was constructed and oriented with respect to the viral RNA. The linear DNA had a 0.6-kb sequence repeated at each terminus. These terminal repeat sequences were required for infectivity of the viral DNA. The minor species of the unintegrated viral DNAs were covalently closed circles of 9.0 and 8.4 kb. The smaller circle was in two- to threefold excess over the larger circle. The difference appeared to be that the smaller circle lacked one of the two 0.6-kb repeat sequences found in the larger circle. Restriction endonuclease maps of the integrated viral DNAs were constructed, and the sequences on both viral DNA and cellular DNA that are involved in integration were determined. The integrated viral DNA map was identical to that of the unintegrated infectious 9.0-kb linear DNA. Therefore, a specific site in the terminal repeat sequence of the viral DNA was used to integrate with the host cell DNA. The sizes of the cellular DNA fragments were different from clone to clone but stable with cell passage. Therefore, many sites in the cell DNA can recombine with the viral DNA.  相似文献   

14.
15.
Unintegrated linear and closed circular DNAs of B- and N-tropic endogenous BALB/c murine leukemia virus (MuLV) were extracted from newly infected mouse cells and cleaved with EcoRI, XhoI, PvuI, HindIII, SalI, XbaI, KpnI, SmaI, and PstI restriction endonucleases. The DNA fragments were separated by electrophoresis and analyzed by the Southern blot hybridization procedure. EcoRI did not cleave the two genomes. A physical map of 15 cleavage sites on B- and N-tropic genomes was constructed with the other restriction endonucleases. Identical cleavage sites of B- and N-tropic MuLV DNAs were found with all these enzymes. However, the N-tropic linear genome was found to lack about 75 base pairs at each end of the molecule. PstI, KpnI, and SmaI recognize a cleavage site at both ends of the linear molecules. And sequences derived from the 5' end of the RNA genome were found in the third left end of the linear DNA and at its extreme right-end terminus, suggesting the presence of redundant sequences. Two species of closed circular viral DNA were observed. The larger species has the same size as the linear molecule and appears to be a circularized form of linear DNA. The smaller species contains sequences common to both the linear and the larger circular viral DNA but seems to be deleted from sequences present at either one or both ends of the linear DNA. Therefore, the general structure of the linear and circular DNA species of these B- and N-tropic endogenous BALB/c MuLV appears analogous to the structure found with other retroviruses.  相似文献   

16.
The RNA genome of the Moloney isolate of murine sarcoma virus (M-MSV) consists of two parts--a sarcoma-specific region with no homology to known leukemia viral RNAs, and a shared region present also in Moloney murine leukemia virus RNA. Complementary DNA was isolated which was specific for each part of the M-MSV genome. The DNA of a number of mammalian species was examined for the presence of nucleotide sequences homologous with the two M-MSV regions. Both sets of viral sequences had homologous nucleotide sequences present in normal mouse cellular DNA. MSV-specific sequences found in mouse cellular DNA closely matched those nucleotide sequences found in M-MSV as seen by comparisons of thermal denaturation profiles. In all normal mouse cells tested, the cellular set of M-MSV-specific nucleotide sequences was present in DNA as one to a few copies per cell. The rate of base substitution of M-MSV nucleotide sequences was compared with the rate of evolution of both unique sequences and the hemoglobin gene of various species. Conservation of MSV-specific nucleotide sequences among species was similar to that of mouse globin gene(s) and greater than that of average unique cellular sequences. In contrast, cellular nucleotide sequences that are homologous to the M-MSV-murine leukemia virus "common" nucleotide region were present in multiple copies in mouse cells and were less well matched, as seen by reduced melting profiles of the hybrids. The cellular common nucleotide sequences diverged very rapidly during evolution, with a base substitution rate similar to that reported for some primate and avian endogenous virogenes. The observation that two sets of covalently linked viral sequences evolved at very different rates suggests that the origin of M-MSV may be different from endogenous helper viruses and that cellular sequences homologous to MSV-specific nucleotide sequences may be important to survival.  相似文献   

17.
The env gene of avian sarcoma-leukosis viruses codes for envelope glycoproteins that determine viral host range, antigenic specificity, and interference patterns. We used molecular hybridization to analyze the natural distribution and possible origins of the nucleotide sequences that encode env; our work exploited the availability of radioactive DNA (cDNA(gp)) complementary to most or all of env. env sequences were detectable in the DNAs of chickens which synthesized an env gene product (chick helper factor positive) encoded by an endogenous viral gene and also in the DNAs of chickens which synthesized little or no env gene product (chick helper factor negative). env sequences were not detectable in DNAs from Japanese quail, ring-necked pheasant, golden pheasant, duck, squab, salmon sperm, or calf thymus. The detection of sequences closely related to viral env only in chicken DNA contrasts sharply with the demonstration that the transforming gene (src) of avian sarcoma viruses has readily detectable homologues in the DNAs of all avian species tested [D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, Nature (London) 260: 170-173, 1976] and in the DNAs of other vertebrates (D. Spector, personal communication). Thermal denaturation studies on duplexes formed between cDNA(gp) and chicken DNA and also between cDNA(gp) and RNAs of subgroup A to E viruses derived from chickens indicated that these duplexes were well matched. In contrast, cDNA(gp) did not form stable hybrids with RNAs of viruses which were isolated from ring-necked and golden pheasants. We conclude that substantial portions of nucleotide sequences within the env genes of viruses of subgroups A to E are closely related and that these genes probably have a common, perhaps cellular, evolutionary origin.  相似文献   

18.
Several DNAs representing the genome of the avian acute leukemia virus OK 10 were isolated by molecular cloning from a transformed quail cell line, 9C, which contained at least six OK 10 proviruses. Recombinant lambda phages harboring the OK 10 genome and additional flanking cellular DNA sequences were studied by restriction endonuclease mapping and hybridization to viral cDNA probes. Six of the clones represented complete proviruses with similar, if not identical, viral sequences integrated at different positions in the host DNA. The organization of the OK 10 genome was determined by electron-microscopic analysis of heteroduplexes formed between the cloned OK 10 DNA and DNAs representing the c-myc gene and the genomes of two other avian retroviruses, Rous-associated virus-1 and MC29. The results indicated that the OK 10 proviral DNA is about 7.5 kilobases in size with the following structure: 5'-LTR-gag-delta polmyc-delta env-LTR-3', where LTR indicates a long terminal repeat. The oncogene of OK 10, v-mycOK 10, forms a continuous DNA segment of around 1.7 kilobases between pol and env. It is similar in structure and length to the v-myc gene of MC29, as demonstrated by restriction endonuclease and heteroduplex analyses. Two of the OK 10 proviruses were tested in transfection experiments: both DNAs gave rise to virus with the transforming capacities of OK 10 when Rous-associated virus-1 was used to provide helper virus functions.  相似文献   

19.
Toward a molecular paleontology of primate genomes   总被引:12,自引:0,他引:12  
KpnI restriction of anthropoid primate DNAs, from a New World monkey to man, releases a series of segments that are remarkable among all of the alphoid DNAs in the constancy of their relative amounts in the various primate genomes, in their long-range organization, and in their internal sequence structure. These segments are labeled the KpnI A, B, C and D segments. Cross-hybridization analysis by Southern filter-transfer hybridization indicates that the KpnI segments represent separate and distinct families of alphoid DNAs. These families are termed the KpnI A, B, C and D families of alphoid sequences, of which only the KpnI A and B families were studied in detail here. - Evidence is presented suggesting that the KpnI segments do not exist as long, tandemly repeated sequences in the primate genome: rather, they may occur interspersed among other, perhaps nonalphoid sequences. From the stained gel patterns and from Southern filter-transfer hybridization experiments, the KpnI families appear to be absent from the genomes of the two prosimians studied - the galago and the black lemur. The KpnI A and B families are found among all of the anthropoid primates, including the New World capuchin monkey. The KpnI C family was detected in the genomes of the Old World anthropoid primates whereas the KpnI D family was detected only among the great apes and man. - The results are in accord with the observation (Musich et al., 1980) that with the continued evolutionary development of the primate Order, there has been a parallel trend toward an increased number and variety of alphoid DNA sequences. The properties of the KpnI families suggest that these sequences, unique among the alphoid DNAs, have been conservatively maintained throughout primate phylogeny and that they are among the most ancient of all primate DNAs.  相似文献   

20.
A combination of technical advances (most notably heterologous cell fusion, high resolution G-banding, and molecular cloning) has contributed to an accelerated advance in genetic analysis in mammals. The present human genetic map contains over 400 gene assignments and the map is growing rapidly as each new molecular clone or immunological reagent is developed. In our laboratory, we have developed a panel of rodent X human somatic cell hybrids that have been utilized in chromosome assignment of several classes of genes including oncogenes (ras, raf) and endogenous human retroviral sequences (ERVL, 2, etc). Using similar techniques, a biochemical genetic map of the domestic cat has been derived. The cat has 19 chromosome pairs and, to date, 40 genes have been mapped to 16 linkage or syntenic groups. Comparison of linkage relationships between homologous enzymes has revealed a striking conversation of chromosomal linkage association between cat and man. A comparison of syntenically homologous, highly extended high resoultion G-banded chromosomes between the two mammalian families revealed that 20–25%, by length, of the human karyotype can be precisely aligned (chromomere to chromomere) between cats and man despite the evolutionary divergence of the species nearly 80 million years ago. Moderately repetitive families of retrovirus-related DNAs exist within the feline and the human genomes. We have isolated molecular clones of several members of the feline RD-114 retrovirus family from a genomic library of normal cat cellular DNA. The endogenous sequences analyzed were similar to each other in that they were colinear with RD-114 proviral DNA, were bounded by long terminal redundancies, and conserved many restriction sites in the gag and pol regions. Several sequences were apparently deleted, relative to the previously characterized inducible RD-114 genome. The env regions of a number of endogenous RD-114 sequences examined were substantially deleted or diverged; a subset of these sequences contained information at the position of the env region that was not homologous to inducible RD-114. The RD-114 virogenes were dispersed to several cat chrosomes that were localized using a panel of rodent x cat somatic cell hybrids. A comparison of the genetic properties of endogenous human retroviral sequences revealed several similarities between the human and feline status of endogenous retroviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号