首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linking temporal trends of soil nitrogen (N) transformation with shifting patterns of plants and consequently changes of litter quality during succession is important for understanding developmental patterns of ecosystem function. However, the successional direction of soil N mineralization and nitrification in relation to species shifts in the subtropical regions remains little studied. In this study, successional patterns of net soil N mineralization and nitrification rates, litter-fall, forest floor litter, fine root and soil properties were quantified through a successional sequence in the subtropical forests of eastern China. Net N mineralization rate was ‘U-shaped’ through succession: highest in climax evergreen broad-leaved forest (CE: 1.6?±?0.2 mg-N kg?1 yr?1) and secondary shrubs (SS: 1.4?±?0.2 mg-N kg?1 yr?1), lowest in conifer and evergreen broad-leaved mixed forest (MF: 1.1?±?0.1 mg-N kg?1 yr?1) and intermediate in conifer forest (CF: 1.2?±?0.1 mg-N kg?1 yr?1) and sub-climax forest (SE: 1.2?±?0.2 mg-N kg?1 yr?1). Soil nitrification increased with time (0.02?±?0.1, 0.2?±?0.1, 0.5?±?0.1, 0.2?±?0.1, and 0.6?±?0.1 mg-N kg?1 yr?1 in SS, CF, MF, SE and CE, respectively). Annual production of litter?fall increased through succession. Fine root stocks and total N concentration, soil total N, total carbon (C) and microbial biomass C also followed ‘U?shaped’ temporal trends in succession. Soil bulk density was highest in MF, lowest in CE, and intermediate in SS, CF and SE. Soil pH was significantly lowest in CE. Temporal patterns of soil N mineralization and nitrification were significant related to the growth of conifers (i.e. Pinus massoniana) and associated successional changes of litter-fall, forest floor, fine roots and soil properties. We concluded that, due to lower litter quality, the position of Pinus massoniana along the succession pathway played an important role in controlling temporal trends of soil N transformation.  相似文献   

2.
Climate change models predict that the snowpacks of temperate forests will develop later and be shallower resulting in a higher propensity for soil freezing. In the northern most island of Japan, Hokkaido, snowpack depth decreases from west to east. This snowpack depth gradient provided a unique opportunity to test the effects of variable snowpack and soil freezing on N biogeochemistry. The Shibecha Northern Catchment in Shibecha Experimental Forest, eastern Hokkaido had deciduous trees and a mean annual snowpack of 0.7 m while the M3 catchment in Uryu Experimental Forest, western Hokkaido had mixed deciduous and coniferous tree species and a mean annual snowpack of 2.0 m. We conducted a field study (October 2004–April 2005) to determine if differences in Shibecha and Uryu soil extractable N, N mineralization, and nitrification were controlled by the variability in soil freezing during winter or tree species composition that affected the quality of the forest floor. The mixed deciduous and coniferous trees forming the Uryu forest floor had a higher C:N ratio (25.0 vs. 22.4 at Shibecha), higher lignin:N ratio (15 vs. 8.8), and higher lignin concentrations (0.28 vs. 0.18 g lignin g−1). These differences in forest floor quality contributed to higher net N mineralization and nitrification in Shibecha compared to Uryu. In Shibecha, soil remained frozen for the entire study. For Uryu, except for an early period with cold temperatures and no snow, the soil generally remained unfrozen. As a result of the early winter cold period and soil freezing, extractable soil NH4+ did not change but NO3 increased. Reciprocal 0–5 cm mineral soil transplants made between Shibecha and Uryu and incubated during winter at 0, 5, and 30 cm suggested that soil freezing resulted in greater net N mineralization yet lower nitrification regardless of the soil origin. The effect of soil freezing should be considered when evaluating differences in N dynamics between temperate ecosystems having a propensity for soil freezing.  相似文献   

3.
Soils that are physically disturbed are often reported to show net nitrification and NO3 loss. To investigate the response of soil N cycling rates to soil mixing, we assayed gross rates of mineralization, nitrification, NH4+ consumption, and NO3 consumption in a suite of soils from eleven woody plant communities in Oregon, New Mexico, and Utah. Results suggest that the common response of net NO3 flux from disturbed soils is not a straightforward response of increased gross nitrification, but instead may be due to the balance of several factors. While mineralization and NH4+ assimilation were higher in mixed than intact cores, NO3 consumption declined. Mean net nitrification was 0.12 mg N kg−1 d−1 in disturbed cores, which was significantly higher than in intact cores (−0.19 mg N kg−1 d−1). However, higher net nitrification rates in disturbed soils were due to the suppression of NO3 consumption, rather than an increase in nitrification. Our results suggest that at least in the short term, disturbance may significantly increase NO3 flux at the ecosystem level, and that N cycling rates measured in core studies employing mixed soils may not be representative of rates in undisturbed soils.  相似文献   

4.
The deposition of nitrogen (N) is high in subtropical forest in South China and it is expected to increase further in the coming decades. To assess effects of increasing deposition on N cycling, we investigated the current N status of two selected 40–45-year-old masson pine-dominated Chinese subtropical forest stands at Tieshanping (TSP, near Chongqing City) and Caijiatang (CJT in Shaoshan, Hunan province), and explored the applicability of several indicators for N status and leaching, suggested for temperate and boreal forest ecosystems. Current atmospheric N deposition to the systems is from 25 to 49 kg ha−1 year−1. The concentration of total N in the upper 15 cm of the soil is from as low as 0.05% in the B2 horizon to as high as 0.53% in the O/A horizon. The concentration of organic carbon (C) varies from 0.74 (B2) to 9.54% (O/A). Pools of N in the upper 15 cm of the soils range from 1460 to 2290 kg N ha−1, where 25–55% of the N pool is in the O/A horizon (upper 3 cm of the soil). Due to a lack of a well-developed continuous O horizon (forest floor), the C/N ratio of this layer cannot be used as an indicator for the N status, as is commonly done in temperate and boreal forests. The net N mineralization rate (mg N g−1 C year−1) in individual horizons correlates significantly with the C/N ratio, which is from as high as 18.2 in the O/A horizon to as low as 11.2 in the B2 horizon. The N2O emission flux from soil is significantly correlated with the KCl extractable NH4+–N in the O/A horizon and with the net nitrification in the upper 15 cm of the soil. However, the spatial and temporal variation of the N2O emission rate is high and rates are small and often difficult to detect in the field. The soil flux density of mineral N, defined as the sum of the throughfall N input rate and the rate of in situ net N mineralization in the upper 15 cm of the soil, i.e., the combination of deposition input and the N status of the system, explains the NO3 leaching potential at 30 cm soil depth best. The seasonality of stream water N concentration at TSP and CJT is climatic and hydrologically controlled, with highest values commonly occurring in the wet growing season and lowest in the dry dormant season. This is different from temperate forest ecosystems, where N saturation is indicated by elevated NO3 leaching in stream water during summer.  相似文献   

5.
We examined the influence of treefall gaps on soil properties and processes in old growth northern hardwood-hemlock forests in the upper Great Lakes region, USA. We found significantly greater solar radiation, soil moisture contents and soil temperatures in gaps compared to adjacent closed canopy plots. Gaps had significantly less exchangeable base cations (K, Ca, and Mg) compared to forest plots in the upper mineral soil (0–25 cm). Gaps also had significantly more dissolved organic N and extractable nitrate at depth (25–50 cm), indicating increased nutrient leaching in gaps. In-situ N mineralization was significantly greater in gaps and edge plots compared to forest plots. We found significantly greater potential N mineralization (measured in the laboratory at 25°C and 40% water holding capacity) in forest compared to gap plots. Microbial biomass N was significantly greater (ca. two-fold) in the gap edge compared to both gaps and closed forest. Using principal component analyses we found that edge plots were positively correlated with all principal components, indicating increased in-situ and potential N mineralization, microbial biomass N, soil NO3 and NH4+, and soil organic matter. The gap edge may be a region of optimal microclimate and substrate to enhance microbial biomass and activity within these forest ecosystems. Responsible Editor: Bernard Nicolardet  相似文献   

6.
The effects of forest management (thinning) on gross and net N conversion, the balance of inorganic N production and consumption, inorganic N concentrations and on soil microbial biomass in the Ah layer were studied in situ during eight intensive field measuring campaigns in the years 2002–2004 at three beech (Fagus sylvatica L.) forest sites. At all sites adjacent thinning plots (“T”) and untreated control plots (“C”) were established. Since the sites are characterized either by cool-moist microclimate (NE site and NW site) or by warm-dry microclimate (SW site) and thinning took place in the year 1999 at the NE and SW sites and in the year 2003 at the NW site the experimental design allowed to evaluate (1) short-term effects (years 1–2) of thinning at the NW site and (2) medium-term effects (years 4–6) of thinning under different microclimate at the SW and NE site. Microbial biomass N was consistently higher at the thinning plots of all sites during most of the field campaigns and was overall significantly higher at the SWT and NWT plots as compared to the corresponding untreated control plots. The size of the microbial biomass N pool was found to correlate positively with both gross ammonification and gross nitrification as well as with extractable soil NO3 concentrations. At the SW site neither gross ammonification, gross nitrification, gross ammonium (NH4+) immobilization and gross nitrate (NO3) immobilization nor net ammonification, net nitrification and extractable NH4+ and NO3 contents were significantly different between control and thinning plot. At the NET plot lower gross ammonification and gross NH4+ immobilization in conjunction with constant nitrification rates coincided with higher net nitrification and significantly higher extractable NO3 concentrations. Thus, the medium-term effects of thinning varied with different microclimate. The most striking thinning effects were found at the newly thinned NW site, where gross ammonification and gross NH4+ immobilization were dramatically higher immediately after thinning. However, they subsequently tended to decrease in favor of gross nitrification, which was significantly higher at the NWT plot as compared to␣the␣NWC plot during all field campaigns after␣thinning except for April 2004. This increase␣in␣gross nitrification at the NWT plot (1.73 mg N kg−1 sdw day−1 versus 0.48 mg N kg−1 sdw day−1 at the NWC plot) coincided with significantly higher extractable NO3 concentrations (4.59 mg N kg−1 sdw at the NWT plot versus 0.96 mg N kg−1 sdw at the NWC plot). Pronounced differences in relative N retention (the ratio of gross NH4+ immobilization + gross NO3 immobilization to gross ammonification + gross nitrification) were found across the six research plots investigated and could be positively correlated to the soil C/N ratio (R = 0.94; p = 0.005). In sum, the results obtained in this study show that (1) thinning can lead to a shift in the balance of microbial inorganic N production and consumption causing a clear decrease in the N retention capacity in the monitored forest soils especially in the first two years after thinning, (2)␣the resistance of the investigated forest ecosystems to disturbances of N cycling by thinning may vary with different soil C contents and C/N ratios, e. g. caused by differences in microclimate, (3) thinning effects tend to decline with the growth of understorey vegetation in the years 4–6 after thinning.  相似文献   

7.
Late-successional forests in the upper Great Lakes region are susceptible to nitrogen (N) saturation and subsequent nitrate (NO3) leaching loss. Endemic wind disturbances (i.e., treefall gaps) alter tree uptake and soil N dynamics; and, gaps are particular susceptible to NO3 leaching loss. Inorganic N was measured throughout two snow-free periods in throughfall, forest floor leachates, and mineral soil leachates in gaps (300–2,000 m2, 6–9 years old), gap-edges, and closed forest plots in late-successional northern hardwood, hemlock, and northern hardwood–hemlock stands. Differences in forest water inorganic N among gaps, edges, and closed forest plots were consistent across these cover types: NO3 inputs in throughfall were significantly greater in undisturbed forest plots compared with gaps and edges; forest floor leachate NO3 was significantly greater in gaps compared to edges and closed forest plots; and soil leachate NO3 was significantly greater in gaps compared to the closed forest. Significant differences in forest water ammonium and pH were not detected. Compared to suspected N-saturated forests with high soil NO3 leaching, undisturbed forest plots in these late-successional forests are not losing NO3 (net annual gain of 2.8 kg ha−1) and are likely not N-saturated. Net annual NO3 losses were observed in gaps (1.3 kg ha−1) and gap-edges (0.2 kg ha−1), but we suspect these N leaching losses are a result of decreased plant uptake and increased soil N mineralization associated with disturbance, and not N-saturation.  相似文献   

8.
In N-limited ecosystems, fertilization by N deposition may enhance plant growth and thus impact C sequestration. In many N deposition–C sequestration experiments, N is added directly to the soil, bypassing canopy processes and potentially favoring N immobilization by the soil. To understand the impact of enhanced N deposition on a low fertility unmanaged forest and better emulate natural N deposition processes, we added 18 kg N ha−1 year−1 as dissolved NH4NO3 directly to the canopy of 21 ha of spruce-hemlock forest. In two 0.3-ha subplots, the added N was isotopically labeled as 15NH4 + or 15NO3 (1% final enrichment). Among ecosystem pools, we recovered 38 and 67% of the 15N added as 15NH4 + and 15NO3 , respectively. Of 15N recoverable in plant biomass, only 3–6% was recovered in live foliage and bole wood. Tree twigs, branches, and bark constituted the most important plant sinks for both NO3 and NH4 +, together accounting for 25–50% of 15N recovery for these ions, respectively. Forest floor and soil 15N retention was small compared to previous studies; the litter layer and well-humified O horizon were important sinks for NH4 + (9%) and NO3 (7%). Retention by canopy elements (surfaces of branches and boles) provided a substantial sink for N that may have been through physico-chemical processes rather than by N assimilation as indicated by poor recoveries in wood tissues. Canopy retention of precipitation-borne N added in this particular manner may thus not become plant-available N for several years. Despite a large canopy N retention potential in this forest, C sequestration into new wood growth as a result of the N addition was only ~16 g C m−2 year−1 or about 10% above the current net annual C sequestration for this site.  相似文献   

9.
Recent advances in soil C saturation concepts have increased our understanding of soil C storage and mineralization without explicit links to N retention and saturation theories. Here, we exploit soil texture and organic matter (OM) gradients in a Maryland, USA hardwood forest to test hypotheses that link soil organic C saturation with soil 15N retention and nitrification. At our site, mineral-associated OM (MAOM) N concentrations in the silt + clay particle fraction (g MAOM-N g silt + clay−1) were negatively correlated with the fraction of NH4-N transferred to MAOM during a 3-day in situ incubation (R = −0.85), but positively correlated with potential net nitrification (R = 0.76). Moreover, the fraction of NH4-N transferred to MAOM was negatively correlated with potential net nitrification (R = −0.76). Due to physico-chemical stabilization mechanisms, MAOM is considered to be resistant to mineralization. Carbon saturation theory suggests that the proportion of new C inputs that can be stabilized in MAOM decreases in proportion to the amount of C already present in the fraction; C inputs not stabilized in MAOM are susceptible to rapid mineralization. We demonstrate that NH4-N stabilization in MAOM is similar to C stabilization in MAOM and associated with nitrification, thereby extending soil C saturation theory to mineral N and linking it with N retention and saturation theories. These data and concepts complement N saturation models that emphasize vegetation type, N input levels, and microbial turnover. Incorporating the OM retention capacity of fine mineral particles into N saturation theory can improve predictions of N saturation rates and resolve inconsistent relationships between soil organic matter, texture, N mineralization, and N retention.  相似文献   

10.
Neal A. Scott  Dan Binkley 《Oecologia》1997,111(2):151-159
The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2 = 0.74, P < 0.01). Net N mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2 = 0.63, P < 0.01) only for tree species. Litterfall quantity, N concentration, and N content correlated poorly with net N mineralization across this range of sites (r 2 < 0.03, P = 0.17–0.26). The relationship between the litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate. Received: 16 December 1996 / Accepted: 8 February 1997  相似文献   

11.
Canada bluejoint grass [Calamagrostis canadensis (Michx.) Beauv., referred to as bluejoint below] is a competitive understory species widely distributed in the boreal region in North America and builds up a thick litter layer that alters the soil surface microclimate in heavily infested sites. This study examined the effects of understory removal, N fertilization, and litter layer removal on litter decomposition, soil microbial biomass N (MBN), and net N mineralization and nitrification rates in LFH (the sum of organic horizons of litter, partially decomposed litter and humus on the soil surface) and mineral soil (0–10 cm) in a 13-year-old white spruce [Picea glauca (Moench.) Voss] plantation infested with bluejoint in Alberta, Canada. Removal of the understory vegetation and the litter layer together significantly increased soil temperature at 10 cm below the mineral soil surface by 1.7 and 1.3°C in summer 2003 and 2004, respectively, resulting in increased net N mineralization (by 1.09 and 0.14 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004) and net nitrification rates (by 0.10 and 0.20 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004). When the understory vegetation was intact, nitrification might have been limited by NH4 + availability due to competition for N from bluejoint and other understory species. Litter layer removal increased litter decomposition rate (percentage mass loss per month) from 2.6 to 3.0% after 15 months of incubation. Nitrogen fertilization did not show consistent effects on soil MBN, but increased net N mineralization and nitrification rates as well as available N concentrations in the soil. Clearly, understory removal combined with N fertilization was most effective in increasing rates of litter decomposition, net N mineralization and nitrification, and soil N availability. The management of understory vegetation dominated by bluejoint in the boreal region should consider the strong effects of understory competition and the accumulated litter layer on soil N cycling and the implications for forest management.  相似文献   

12.
Rice  Steven K.  Westerman  Bryant  Federici  Robert 《Plant Ecology》2004,174(1):97-107
We investigated the influence of the exotic nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen cycling in a pitch pine (Pinus rigida) −scrub oak (Quercus ilicifolia, Q. prinoides) ecosystem. Within paired pine-oak and adjacent black locust stands that were the result of a 20-35 year-old invasion, we evaluated soil nutrient contents, soil nitrogen transformation rates, and annual litterfall biomass and nitrogen concentrations. In the A horizon, black locust soils had 1.3-3.2 times greater nitrogen concentration relative to soils within pine-oak stands. Black locust soils also had elevated levels of P and Ca, net nitrification rates and total net N-mineralization rates. Net nitrification rates were 25-120 times greater in black locust than in pine-oak stands. Elevated net N-mineralization rates in black locust stands were associated with an abundance of high nitrogen, low lignin leaf litter, with 86 kg N ha–1 yr–1 in leaf litter returned compared with 19 kg N ha–1 yr–1 in pine-oak stands. This difference resulted from a two-fold greater litterfall mass combined with increased litter nitrogen concentration in black locust stands (1.1% and 2.6% N for scrub oak and black locust litter, respectively). Thus, black locust supplements soil nitrogen pools, increases nitrogen return in litterfall, and enhances soil nitrogen mineralization rates when it invades nutrient poor, pine-oak ecosystems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Differences between growth forms in root responses to experimentally created heterogeneity have been documented in many greenhouse and plot studies, but not in natural vegetation. Here we examined the response of roots to experimental nutrient patches in undisturbed grassland and forest at the northern edge of the North American Great Plains. Forest vegetation increases the spatial heterogeneity of soil resources, and we tested for differences between forest and grassland roots in response to patches. Ten minirhizotrons (clear tubes, 5 cm diameter, 180 cm long) were installed in both grassland and forest 3 years before the experiment. Minirhizotrons ran horizontally 10 cm beneath the soil surface. Patches of available nitrogen (N) were created over the tubes, using three concentrations (0, 3, 15 g N m−2 yr−1) and two patch sizes (1␣and 10 cm2). Root images were collected beneath patches over the course of a growing season. Root length was significantly greater in grassland than forest at the start and end of the growing season, but did not respond to N patches. Root production was also significantly greater in grassland than forest, and was significantly greater (about 20%) in high-N patches than in unfertilized patches. This increase, however, did not differ between vegetation types. Turnover did not vary with any treatment, and patch size had no effect on any response variable. Overall, differences caused by experimental patches were much smaller than differences between habitats, and did not vary between habitats. Realistic levels of experimentally imposed hetereogeneity in established vegetation may not be much greater than background levels, and field vegetation has extant root systems which respond to patches via uptake instead of growth. Both mechanisms should contribute to less root proliferation in field experiments than in greenhouse experiments.  相似文献   

14.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

15.
Fluxes of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) between soils and the atmosphere were measured monthly for one year in a 77-year-old temperate hardwood forest following a simulated hurricane blowdown. Emissions of CO2 and uptake of CH4 for the control plot were 4.92 MT C ha−1 y−1 and 3.87 kg C ha−1 y−1, respectively, and were not significantly different from the blowdown plot. Annual N2O emissions in the control plot (0.23 kg N ha−1 y−1) were low and were reduced 78% by the blowdown. Net N mineralization was not affected by the blowdown. Net nitrification was greater in the blowdown than in the control, however, the absolute rate of net nitrification, as well as the proportion of mineralized N that was nitrified, remained low. Fluxes of CO2 and CH4 were correlated positively to soil temperature, and CH, uptake showed a negative relationship to soil moisture. Substantial resprouting and leafing out of downed or damaged trees, and increased growth of understory vegetation following the blowdown, were probably responsible for the relatively small differences in soil temperature, moisture, N availability, and net N mineralization and net nitrification between the control and blowdown plots, thus resulting in no change in CO2 or CH4 fluxes, and no increase in N2O emissions.  相似文献   

16.
This study was conducted to examine the influences of soil-moisture conditions on soil nitrogen (N) dynamics, including in situ soil N mineralization, N availability, and denitrification in a pure Alnus japonica forest located in Seoul, central Korea. The soil N mineralization, N availability, and denitrification were determined using the buried bag incubation method, ion exchange resin bag method, and acetylene block method, respectively. The annual net N mineralization rate (kg N ha−1 year−1) and annual N availability (mg N bag−1) were 40.26 and 80.65 in the relatively dry site, −5.43 and 45.39 in the moist site, and 7.09 and 39.17 in the wet site, respectively. The annual net N mineralization rate and annual N availability in the dry site were significantly higher than those in the moist and wet sites, whereas there was no significant difference between the moist and wet sites. The annual mean denitrification rate (kg N ha−1 year−1) in the dry, moist, and wet sites was 2.37, 2.76, and 1.59, respectively. However, there was no significant difference among sites due to the high spatial and temporal variations. Our results indicate that soil-moisture condition influenced the in situ N mineralization and resin bag N availability in an A. japonica forest, and treatments of proper drainage for poorly drained sites would increase soil N mineralization and N availability and consequently be useful to conserve and manage the A. japonica forest.  相似文献   

17.
This study monitored deposition and decomposition of cattle dung in a grazed young Chamaecyparis obtusa (an evergreen conifer) plantation in southwestern Japan, as a part of exploring the impacts of livestock in the forest grazing system. Animals defecated 10–19 times hd−1 day−1, producing feces of 2.2–3.5 kg DM and 33–73 g N per animal per day. The DM and N concentrations of feces ranged from 157–207 g DM kg−1 and 14.8−23.1 g (kg DM)−1, respectively. Occurrence of defecation was spatially heterogeneous, with feces being concentrated mainly on areas for resting (forest roads, ridges and valleys) and moving (forest roads and along fence lines). Decomposition of dung pats was considerably slow, showing the rates of 1.37–3.05 mg DM (g DM)−1 day−1 as DM loss. Decomposition was further slower on the basis of N release, 0.51–1.63 mg N (g N)−1 day−1, resulting in steadily increased N concentrations of dung pats with time after deposition. The results show that introduction of livestock into a forest (i.e., forest grazing) may limit nutrient availability to plants, by redistributing nutrients into areas with no vegetation (bare land and streams) and by establishing a large N pool as feces due to an imbalance between deposition and slow release, though further studies are necessary for investigating the occurrence of slow dung decomposition in other forest situations.  相似文献   

18.
Phosphorus budget of a 70-year-old northern hardwood forest   总被引:5,自引:2,他引:3  
Recent measurements have made it possible to revise and improve the phosphorus budget of the Hubbard Brook Experimental Forest, including partitioning P uptake by vegetation from the forest floor and mineral soil and estimating net P mineralization in the forest floor. Both living biomass and forest floor are accumlating P (at rates of 1.3 and 0.16 kg P ha-1 yr-1 respectively) in this 70-yr old northern hardwood forest. About 61% of the P taken up by the vegetation each year comes from the forest floor (5.9 kg P ha-1 yr-1 of a total 9.6 kg P ha-1 yr-1), even though the P content of this pool is just 5% of that in mineral soil. The turnover rate of P in the forest floor is 7% yr-1, while that of the mineral soil is 0.3% yr-1. Recycling of P in the forest floor is very efficient; of the 5.6 kg P ha-1 yr-1 net mineralization in the forest floor, only 0.3 kg P ha-1 leaches into the mineral soil; the rest is taken up by plants. This tight recycling of P is important because P is less readily available in the mineral soil than in the forest floor.  相似文献   

19.
Eight forest sites representing a large range of climate, vegetation, and productivity were sampled in a transect across Oregon to study the relationships between aboveground stand characteristics and soil microbial properties. These sites had a range in leaf area index of 0.6 to 16 m2 m–2 and net primary productivity of 0.3 to 14 Mg ha–1 yr–1.Measurements of soil and forest floor inorganic N concentrations and in situ net N mineralization, nitrification, denitrification, and soil respiration were made monthly for one year. Microbial biomass C and anaerobic N mineralization, an index of N availability, were also measured. Annual mean concentrations of NH 4 + ranged from 37 to 96 mg N kg–1 in the forest floor and from 1.7 to 10.7 mg N kg–1 in the mineral soil. Concentrations of NO 3 were low ( < 1 mg N kg–1) at all sites. Net N mineralization and nitrification, as measured by the buried bag technique, were low on most sites and denitrification was not detected at any site. Available N varied from 17 to 101 mg N kg–1, microbial biomass C ranged from 190 to 1230 mg Ckg–1, and soil respiration rates varied from 1.3 to 49 mg C kg–1 day–1 across these sites. Seasonal peaks in NH 4 + concentrations and soil respiration rates were usually observed in the spring and fall.The soils data were positively correlated with several aboveground variables, including leaf area index and net primary productivity, and the near infrared-to-red reflectance ratio obtained from the airborne simulator of the Thematic Mapper satellite. The data suggest that close relationships between aboveground productivity and soil microbial processes exist in forests approaching semi-equilibrium conditions.Abbreviations IR infrared - LAI leaf area index - k c proportion of microbial biomass C mineralized to CO2 - NPP net primary productivity - TM Thematic Mapper  相似文献   

20.
Sandy clay loam soil was contaminated with 5000 mg kg−1 diesel, and amended with nitrogen (15.98 atom% 15N) at 0, 250, 500, and 1000 mg kg−1 to determine gross rates of nitrogen transformations during diesel biodegradation at varying soil water potentials. The observed water potential values were −0.20, −0.47, −0.85, and −1.50 MPa in the 0, 250, 500, and 1000 mg kg−1 nitrogen treatments respectively. Highest microbial respiration occurred in the lowest nitrogen treatment suggesting an inhibitory osmotic effect from higher rates of nitrogen application. Microbial respiration rates of 185, 169, 131, and 116 mg O2 kg−1 soil day−1 were observed in the 250, 500, control and 1000 mg kg−1 nitrogen treatments, respectively. Gross nitrification was inversely related to water potential with rates of 0.2, 0.04, and 0.004 mg N kg−1 soil day−1 in the 250, 500, and 1000 mg kg−1 nitrogen treatments, respectively. Reduction in water potential did not inhibit gross nitrogen immobilization or mineralization, with respective immobilization rates of 2.2, 1.8, and 1.8 mg N kg−1 soil day−1, and mineralization rates of 0.5, 0.3, and 0.3 mg N kg−1 soil day−1 in the 1000, 500, and 250 mg kg−1 nitrogen treatments, respectively. Based on nitrogen transformation rates, the duration of fertilizer contribution to the inorganic nitrogen pool was estimated at 0.9, 1.9, and 3.2 years in the 250, 500, and 1000 mg kg−1 nitrogen treatments, respectively. The estimation was conservative as ammonium fixation, gross nitrogen immobilization, and nitrification were considered losses of fertilizer with only gross mineralization of organic nitrogen contributing to the most active portion of the nitrogen pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号