首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Integrative recombination between specific attachment (att) regions of the bacteriophage lambda genome (attP) and the Escherichia coli genome (attB) results in a prophage flanked by the hybrid recombinant sites attL and attR. Each att site contains sequences to which proteins involved in recombination bind. Using site-directed mutagenesis, we have constructed a related set of point mutations within each of the five Int "arm-type" binding sites located within attP, attL and attR. Footprint analyses of binding demonstrate that mutating the arm-type sites significantly disrupts the binding of Int. Recombination analyses of mutant att sites in vivo and in vitro demonstrate that only three wild-type arm-type sites within attP are required for efficient integrative recombination. Similar analyses demonstrate that efficient excision can occur with two other different sets of wild-type arm-type sites in attL and attR. These results demonstrate that integrative and excisive recombination may involve interactions of Int with distinct and different subsets of arm-type sites.  相似文献   

2.
Summary O c mutations in the operators of bacteriophage lambda have been used to analyze the functional organization of the operators. In each operator, repressor binding sites 1 and 2, as identified biochemically, were found to be primarily responsible for the repressor affinity of the operators in vitro and for the repression of lytic functions in vivo. In addition, both sites were shown to be involved in the action of cro product at the operators. The data obtained have been used to estimate the repressor affinities of the individual binding sites. These affinities suggest that repressor bound at O R1 and O R2 interacts cooperatively. The results obtained support a model for repression of the early lambda operons where repressor bound at binding sites 1 and 2 interferes with RNA polymerase binding to the promoter sites.  相似文献   

3.
Mutational analysis of bacteriophage lambda lysis gene S   总被引:15,自引:8,他引:7       下载免费PDF全文
A plasmid carrying the bacteriophage lambda lysis genes under lac control was subjected to hydroxylamine mutagenesis, and mutations eliminating the host lethality of the S gene were selected. DNA sequence analysis revealed 48 single-base mutations which resulted in alterations within the coding sequence of the S gene. Thirty-three different missense alleles were generated. Most of the missense changes clustered in the first two-thirds of the molecule from the N terminus. A simple model for the disposition of the S protein within the inner membrane can be derived from inspection of the primary sequence. In the first 60 residues, there are two distinct stretches of predominantly hydrophobic amino acids, each region having a net neutral charge and extending for at least 20 residues. These regions resemble canonical membrane-spanning domains. In the model, the two domains span the bilayer as a pair of net neutral charge helices, and the N-terminal 10 to 12 residues extend into the periplasm. The mutational pattern is largely consistent with the model. Charge changes within the putative imbedded regions render the protein nonfunctional. Loss of glycine residues at crucial reverse-turn domains which would be required to reorient the molecule to reenter the membrane also inactivate the molecule. Finally, a number of neutral and rather subtle mutations such as Ala to Val and Met to Ile are found, mostly within the putative spanning regions. Although no obvious explanation exists for this subtle and heterogeneous class of mutations, it is noted that all of the changes result in a loss of alpha-helical character as predicted by Chou-Fasman theoretical analysis. Alternative explanations for some of these changes are also possible, including a reduction in net translation rate due to substitution of a rare codon for a common one. The model and the pattern of mutations have implications for the probable oligomerization of the S protein at the time of endolysin release at the end of the vegetative growth period.  相似文献   

4.
5.
The groE protein, which is involved in the morphogenesis of several bacteriophages, was isolated using a hybrid bacteriophage λ strain which overproduces it. The protein was characterized using biophysical methods, electron microscopy and digital image processing. We postulate that the gp groE complex contains 14 subunits in a cylindrical aggregate with 7-fold rotational symmetry. Possible mechanisms are discussed for the action of this complex in phage morphogenesis.  相似文献   

6.
The lambda O and P gene products are required for the initiation of lambda DNA replication. In order to study the biochemistry of this process, we have constructed plasmids that carry the lambda O gene, P gene, and half of the O gene coding for the amino-terminal half of the O protein. Each is under the control of the inducible lambda promoter, PL. We have purified these three proteins from induced cells carrying the plasmids. Our results show that the amino-terminal portion of the O protein binds to the lambda origin of replication in a manner similar to the intact lambda O protein, demonstrating that the amino-terminal portion of O protein contains the DNA binding domain. Using chromatographic procedures, we have isolated a complex of lambda O and P proteins with lambda dv DNA. The amino-terminal portion of the O protein does not complex with P protein under the same conditions. This suggests that the specificity of the lambda O protein for P protein resides in the carboxyl-terminal half of the lambda O protein. Our results also show that, while the intact O protein is active in in vitro replication of lambda dv plasmid DNA, the amino-terminal portion of the O protein is inactive and is a competitive inhibitor of the lambda O protein in this reaction. These results confirm previous genetic observations that were interpreted as indicating a bifunctional structure for the lambda O protein with the amino-terminal domain recognizing the lambda origin of replication and the carboxyl-terminal domain interacting with the lambda P protein.  相似文献   

7.
8.
The phage lambda attachment site, attP, contains three binding sites for an Escherichia coli protein, IHF, that is needed for efficient integrative recombination. We have used synthetic oligodeoxyribonucleotides to direct multiple base changes at each of these three sites. Alteration by two base-pairs of the consensus sequence for the leftmost binding site specifically interferes with IHF binding to that site and modestly depresses recombination in vitro. For each of the three binding sites, alteration of the consensus sequence by four base-pairs strongly depresses recombination in vitro, indicating that all three sites are important for attP function. The mutated attP sites are also depressed for recombination in vivo but some of the mutants are less affected than they are in vitro. The disparity between effects in vivo and in vitro for some mutants but not others suggests that the three binding sites are not functionally equivalent and that at some sites additional E. coli factors may replace or assist IHF. The non-equivalence of the three IHF sites is also indicated by the behavior of prophage attachment sites carrying mutations in the binding sites.  相似文献   

9.
Vaccinia DNA topoisomerase catalyzes the cleavage and re-joining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate formed at a specific target sequence, 5'-(C/T)CCTT downward arrow. The 314 aa protein consists of three protease-resistant structural domains demarcated by protease-sensitive interdomain segments referred to as the bridge and the hinge. The bridge is defined by trypsin-accessible sites at Arg80, Lys83 and Arg84. Photocrosslinking and proteolytic footprinting experiments suggest that residues near the interdomain bridge interact with DNA. To assess the contributions of specific amino acids to DNA binding and transesterification chemistry, we introduced alanine substitutions at 16 positions within a 24 aa segment from residues 63 to 86(DSKGRRQYFYGKMHVQNRNAKRDR). Assays of the rates of DNA relaxation under conditions optimal for the wild-type topoisomerase revealed significant mutational effects at six positions; Arg67, Tyr70, Tyr72, Arg80, Arg84 and Asp85. The mutated proteins displayed normal or near-normal rates of single-turnover transesterification to DNA. The effects of amino acid substitutions on DNA binding were evinced by inhibition of covalent adduct formation in the presence of salt and magnesium. The mutant enzymes also displayed diminished affinity for a subset of cleavage sites in pUC19 DNA. Tyr70 and Tyr72 were subjected to further analysis by replacement with Phe, His, Gln and Arg. At both positions, the aromatic moiety was important for DNA binding.  相似文献   

10.
Based on their activity as effectors for the ATPase activity of Escherichia coli replication factor Y and as templates for primosome-directed DNA synthesis, single-point mutations in the L- and H-strand primosome assembly sites from pBR322 DNA have been grouped into four classes (Abarzúa, P., Soeller, W., and Marians, K. (1984) J. Biol. Chem. 259, 14286-14292). In this report, the effect of various ligands on the characteristic activities of primosome assembly site class II mutants has been examined. Both Mn2+ and spermidine can, at low levels, substitute for Mg2+ in the activation of wild-type sites as effectors for factor Y-catalyzed hydrolysis of ATP. Class II mutant sites characteristically require higher levels of these ligands for activation, suggesting that the specific higher order structure of an active primosome assembly site is maintained through base pairing within the single-stranded DNA sequence. This conclusion is supported by the following. 1) Excess levels of the E. coli single-stranded DNA-binding protein can inactivate wild-type sites at 1 mM Mg2+. Either the addition of NaCl to 80 mM or an increase in the Mg2+ concentration to 5 mM protects against this inactivation. Class II mutant sites, however, cannot be stabilized by 80 mM NaCl at 1 mM Mg2+, and only some class II mutants can be stabilized at 5 mM Mg2+. 2) Active second-site revertants, isolated in vivo and in vitro, of inactive primosome assembly sites containing multiple-base substitutions have mutated to restore lost base pairs in the proposed stem and loop structure of the sites.  相似文献   

11.
Specific endonucleases from Hemophilus influenzae, H. parainfluenzae and H. aegyptius were used to separate fragments bearing only one of the various promoters in phage λ DNA. Fragments containing these promoters were characterized by comparative analysis on polyacrylamide gels of the digestion products from λ and a variety of deletion or deletion-substitution derivatives. A single endonuclease from H. influenzae, Hin-II, is shown to cleave the early leftward and rightward promoters, pL and pR, at the sites of cleavage of the operators, OL and OR, because the corresponding cleavage sites are specifically protected by the DNA-dependent RNA polymerase. With altered pL (mutations sex1 and sex3), the cleavage in the corresponding promoter is abolished. With X13, a mutation that presumably inactivates pR, the cleavage in OR still occurs.  相似文献   

12.
beta protein from bacteriophage lambda promotes a single-strand annealing reaction that is central to Red-mediated recombination at double-strand DNA breaks and chromosomal ends. beta protein binds most tightly to an intermediate of annealing formed by the sequential addition of two complementary oligonucleotides. Here we have characterized the domain structure of beta protein in the presence and absence of DNA using limited proteolysis. Residues 1-130 form an N-terminal "core" domain that is resistant to proteases in the absence of DNA, residues 131-177 form a central region with enhanced resistance to proteases upon DNA complex formation, and the C-terminal residues 178-261 of beta protein are sensitive to proteases in both the presence and absence of DNA. We probed the DNA binding regions of beta protein further using biotinylation of lysine residues and mass spectrometry. Several lysine residues within the first 177 residues of beta protein are protected from biotinylation in the DNA complex, whereas none of the lysine residues in the C-terminal portion are protected. The results lead to a model for the domain structure and DNA binding of beta protein in which a stable N-terminal core and a more flexible central domain come together to bind DNA, whereas a C-terminal tail remains disordered. A fragment consisting of residues 1-177 of beta protein maintains normal binding to sequentially added complementary oligonucleotides and has significantly enhanced binding to single-strand DNA.  相似文献   

13.
Integration of the bacteriophage P2 genome into the Escherichia coli host chromosome occurs by site-specific recombination between the phage attP and E. coli attB sites. The phage-encoded 38-kDa protein, integrase, is known to be necessary for both phage integration as well as excision. In order to begin the molecular characterization of this recombination event, we have cloned the int gene and overproduced and partially purified the Int protein and an N-terminal truncated form of Int. Both the wild-type Int protein and the integration host factor (IHF) of E. coli were required to mediate integrative recombination in vitro between a supercoiled attP plasmid and a linear attB substrate. Footprint experiments revealed one Int-protected region on both of the attP arms, each containing direct repeats of the consensus sequence TGTGGACA. The common core sequences at attP and attB were also protected by Int from nuclease digestion, and these contained a different consensus sequence, AA T/A T/A C/A T/G CCC, arranged as inverted repeats at each core. A single IHF-protected site was located on the P (left) arm, placed between the core- and P arm-binding site for Int. Cooperative binding by Int and IHF to the attP region was demonstrated with band-shift assays and footprinting studies. Our data support the existence of two DNA-binding domains on Int, having unrelated sequence specificities. We propose that P2 Int, IHF, attP, and attB assemble in a higher-order complex, or intasome, prior to site-specific integrative recombination analogous to that formed during lambda integration.  相似文献   

14.
The transferrin receptor (TfR) binds two proteins critical for iron metabolism: transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. Previous results demonstrated that Tf and HFE compete for binding to TfR, suggesting that Tf and HFE bind to the same or an overlapping site on TfR. TfR is a homodimer that binds one Tf per polypeptide chain (2:2, TfR/Tf stoichiometry), whereas both 2:1 and 2:2 TfR/HFE stoichiometries have been observed. In order to more fully characterize the interaction between HFE and TfR, we determined the binding stoichiometry using equilibrium gel-filtration and analytical ultracentrifugation. Both techniques indicate that a 2:2 TfR/HFE complex can form at submicromolar concentrations in solution, consistent with the hypothesis that HFE competes for Tf binding to TfR by blocking the Tf binding site rather than by exerting an allosteric effect. To determine whether the Tf and HFE binding sites on TfR overlap, residues at the HFE binding site on TfR were identified from the 2.8 A resolution HFE-TfR co-crystal structure, then mutated and tested for their effects on HFE and Tf binding. The binding affinities of soluble TfR mutants for HFE and Tf were determined using a surface plasmon resonance assay. Substitutions of five TfR residues at the HFE binding site (L619A, R629A, Y643A, G647A and F650Q) resulted in significant reductions in Tf binding affinity. The findings that both HFE and Tf form 2:2 complexes with TfR and that mutations at the HFE binding site affect Tf binding support a model in which HFE and Tf compete for overlapping binding sites on TfR.  相似文献   

15.
Outer surface protein of bacteriophage lambda   总被引:6,自引:0,他引:6  
The bacteriophage λ capsid is composed of a main shell protein (pE) and an outer surface protein (pD). The outer surface protein was purified from sources of free protein and assembled protein. The amino acid composition, C- and N-terminals, iso-electric point, molecular weight, and state of aggregation were determined. In vitro the outer surface protein binds specifically to structures composed of λ main shell protein in the expanded configuration i.e. to enlarged preheads, pD-deficient bacteriophage particles, and polyheads.We discuss the binding of pD to the shell surface as a “pseudo-crystallisation process”, its clustering on the surface as trimers and its role as stabiliser of the filled head.  相似文献   

16.
K A Jones  R M Myers    R Tjian 《The EMBO journal》1984,3(13):3247-3255
We have tested the effects of various mutations within SV40 T antigen DNA recognition sites I and II on specific T antigen binding using the DNase footprint technique. In addition, the replication of plasmid DNA templates carrying these T antigen binding site mutations was monitored by Southern analysis of transfected DNA in COS cells. Deletion mapping of site I sequences defined a central core of approximately 18 bp that is both necessary and sufficient for T antigen recognition; this region contains the site I contact nucleotides that were previously mapped using methylation-interference and methylation-protection experiments. A similar deletion analysis delineated sequences that impart specificity of binding to site II. We find that T antigen is capable of specific recognition of site II in the absence of site I sequences, indicating that binding to site II in vitro is not dependent on binding of T antigen at site I. Site II binding was not diminished by small deletion or substitution mutations that perturb the 27-bp palindrome central to binding site II, whereas extensive substitution of site II sequences completely eliminated specific site II binding. Analysis of the replication in COS7 cells of plasmids that contain these mutant origins revealed that sequences both at the late side of binding site I and within the site II palindrome are crucial for viral DNA replication, but are not involved in binding T antigen.  相似文献   

17.
Summary Among the survivors of Escherichia coli derivatives infected with phage c1 or vir that are unable to establish ordinal lysogeny, clones arise which perpetuate the nondefective phage genome. When the bacteria bears a mutation(s) that makes the cell tolerant to the phage multiplication, such clones appear readily.The bacteria- complex was studied genetically and chemically, and it was concluded that the intact phage genomes, about two to four circular copies per bacterial chromosome, are perpetuated in bacterial cytoplasm as plasmids or in lysogenic state in cytoplasm.Several lines of evidence suggests that the phage genome in the lysogenic state in cytoplasm is under a different regulatory system from that in the normal prophage state on chromosome.  相似文献   

18.
19.
Mutagenesis was used to investigate the functional role of six pairs of aspartate and glutamate residues (D450/D1093, E482/E1125, E552/E1197, D558/D1203, D592/D1237, and E604/E1249) that are highly conserved in the nucleotide binding sites of P-glycoprotein (Mdr3) and of other ABC transporters. Removal of the charge in E552Q/E1197Q and D558N/D1203N produced proteins with severely impaired biological activity when the proteins were analyzed in yeast cells for cellular resistance to FK506 and restoration of mating in a ste6Delta mutant. Mutations at other acidic residues had no apparent effect in the same assays. These four mutants were expressed in Pichia pastoris, purified to homogeneity, and biochemically characterized with respect to ATPase activity. Studies with purified proteins showed that mutants D558N and D1203N retained 14 and 30% of the drug-stimulated ATPase activity of wild-type (WT) Mdr3, respectively, and vanadate trapping of 8-azido[alpha-(32)P]nucleotide confirmed slower basal and drug-stimulated 8-azido-ATP hydrolysis compared to that for WT Mdr3. The E552Q and E1197Q mutants showed no drug-stimulated ATPase activity. Surprisingly, drugs did stimulate vanadate trapping of 8-azido[alpha-(32)P]nucleotide in E552Q and E1197Q at a level similar to that of WT Mdr3. This suggests that formation of the catalytic transition state can occur in these mutants, and that the bond between the beta- and gamma-phosphates is hydrolyzed. In addition, photolabeling by 8-azido[alpha-(32)P]nucleotide in the presence or absence of drug was also detected in the absence of vanadate in these mutants. These results suggest that steps after the transition state, possibly involved in release of MgADP, are severely impaired in these mutant enzymes.  相似文献   

20.
To map the protein-protein and protein-DNA interactions involved in lambda site-specific recombination, Int cleavage assays with suicide substrates, nuclease protection patterns, gel retardation experiments, and quantitative Western blotting were applied to wild-type attL and attL mutants. The results lead to a model in which one IHF molecule bends the attL DNA and forms a higher order complex with the three bivalent Int molecules required for excisive recombination. It is proposed that each of the Int molecules binds in a unique manner: one bridges two DNA binding sites in cis, one is held via its high affinity amino-terminal DNA binding domain, and the third depends upon protein-protein interactions in addition to its low affinity carboxy-terminal DNA binding domain. This protein-DNA complex contains two unsatisfied DNA binding domains, each with a different sequence specificity, and is well suited to specific interactions with an appropriate recombination partner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号