首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We looked for changes in gene expression and novel genes that could be involved in the interaction between glucose repression and oxidative stress response in the fission yeast, Schizosaccharomyces pombe, using a constitutive invertase mutant, ird11, which is resistant to glucose. BLAST analysis was made of the S. pombe genome database of cDNAs whose expression ratios differentially decreased or increased upon exposure to mild oxidative stress in this mutant compared to the wild type. Genes with this type of activity were identified as rpl302, encoding 60S ribosomal protein L3, and mpg1, encoding mannose-1-phosphate guanyltransferase; their expression patterns were measured using quantitative real-time PCR. We found that the expression levels of rpl302 and mpg1 genes in ird11 under unstressed conditions were increased compared to those of the wild type. Under stress conditions, the expression levels of the rpl302 gene were decreased in both strains, while mpg1 expression levels remained unchanged. These results suggest that these genes play a role in the response to oxidative stress in this mutant strain.  相似文献   

3.
4.
5.
6.
We have identified three genes, gst1(+), gst2(+), and gst3(+), encoding theta-class glutathione S-transferases (GSTs) in Schizosaccharomyces pombe. The gst1(+) and gst2(+) genes encode closely related proteins (79% identical). Our analysis suggests that Gst1, Gst2, and Gst3 all have GST activity with the substrate 1-chloro-2,4-dinitrobenzene and that Gst3 has glutathione peroxidase activity. Although Gst1 and Gst2 have no detectable peroxidase activity, all three gst genes are required for normal cellular resistance to peroxides. In contrast, each mutant is more resistant to diamide than wild-type cells. The gst1Delta, gst2Delta, and gst3Delta mutants are also more sensitive to fluconazole, suggesting that GSTs may be involved in anti-fungal drug detoxification. Both gst2(+) and gst3(+) mRNA levels increase in stationary phase, and all three gst genes are induced by hydrogen peroxide. Indeed, gst1(+), gst2(+), and gst3(+) are regulated by the stress-activated protein kinase Sty1. The Gst1 and Gst2 proteins are distributed throughout the cell and can form homodimers and Gst1-Gst2 heterodimers. In contrast, Gst3 is excluded from the nucleus and forms homodimers but not complexes with either Gst1 or Gst2. Collectively, our data suggest that GSTs have separate and overlapping roles in oxidative stress and drug responses in fission yeast.  相似文献   

7.
Experiments in strains of yeast with different genetic backgrounds were done to evaluate the kinetics of inactivation and mutation induction by X-radiations. A system of forward mutation induction in five loci was used and a specific mutation rate of 0.14·10−8×locus×rad was evaluated for the wild type.From a comparison of observations with wild type and radiation-sensitive strains, it may be assumed that, in this yeast, mutations are mainly the result of a repair-active process.The range of genotypic and phenotypic influence upon the specific locus mutation rate was evaluated with appropriate biological material and experiments.  相似文献   

8.
9.
Trk1 and Trk2 are the major K(+) transport systems in Schizosaccharomyces pombe. Both transporters individually seem to be able to cope with K(+) requirements of the cells under normal conditions, since only the double mutant shows defective K(+) transport and defective growth at limiting K(+) concentrations. We have studied in detail the role of SpTrk1 and SpTrk2 under different ion stress conditions. Results show that the strain with only Trk1 (trk1(+)) is less sensitive to Li(+) and to hygromycin B, it grows better at low K(+) and it survives longer in a medium without K(+) than the strain expressing only Trk2 (trk2(+)). We conclude that Trk1 contributes more efficiently than Trk2 to the performance of the fission yeast under ion stress conditions. In the wild type both trk1(+) and trk2(+) genes are expressed and probably collaborate for the performance of the cells.  相似文献   

10.
A potential correlation between mitochondrial and vacuolar functions is known to exit in yeast. Fission yeast atm1(+), SPAC15A10.01, encodes a putative half-type ABC transporter with an N-terminal mitochondrial-targeting signal. In an attempt to evaluate the possible involvement of mitochondrion in vacuole function, a functional analysis of atm1(+) was performed by gene disruption. Growth of the atm1 mutant was inhibited in the presence of oxidizing agents, and S. cerevisiae Atm1p was found to complement this growth defect. atm1Delta cells exhibited defects in fluid-phase endocytosis and vacuolar fusion under hypotonic stress. GFP-tagged Atm1p was observed to be localized in the mitochondria. These data strongly suggest that fission yeast Atm1p was not only involved in protection against oxidative stress, but also played a role in vacuolar functions.  相似文献   

11.
Kang WH  Park YD  Hwang JS  Park HM 《FEBS letters》2007,581(18):3473-3478
Recent studies have shown that global gene expression during oxidative stress in Schizosaccharomyces pombe is regulated by stress-induced activation and binding of Csx1 to atf1(+) mRNA. However, the kinase responsible for the activation of Csx1 has not been identified. Here, we describe, for the first time, that Csx1 is phosphorylated by S. pombe LAMMER kinase, Lkh1, under oxidative conditions and that the stress-activated binding of the Csx1 to the atf1(+) mRNA was also affected by Lkh1 and Spc1. These data indicate that concerted actions of Spc1 and Lkh1 are required for the activation of Csx1 during oxidative condition in the fission yeast S. pombe.  相似文献   

12.
13.
14.
15.
Brain-derived neurotrophic factor (BDNF) is considered as a putative therapeutic agent against stroke. Since BDNF role on oxidative stress is uncertain, we have studied this role in a rat brain slice ischemia model, which allows BDNF reaching the neural parenchyma. Hippocampal and cerebral cortex slices were subjected to oxygen and glucose deprivation (OGD) and then returned to normoxic conditions (reperfusion-like, RL). OGD/RL increased a number of parameters mirroring oxidative stress in the hippocampus that were reduced by the BDNF presence. BDNF also reduced the OGD/RL-increased activity in a number of antioxidant enzymes in the hippocampus but no effects were observed in the cerebral cortex. In general, we conclude that alleviation of oxidative stress by BDNF in OGD/RL-exposed slices relies on decreasing cPLA2 activity, rather than modifying antioxidant enzyme activities. Moreover, a role for the oxidative stress in the differential ischemic vulnerability of cerebral cortex and hippocampus is also supported.  相似文献   

16.
We have studied the reversion of 8 nonsense alleles located in 7 different genes of Schizosaccharomyces pombe using 4-nitroquinoline-1-oxide (NQO) as a mutagenic agent. The nonsense mutants of S. pombe have been classified according to their suppressibility by defined opal and ochre suppressors into a class of efficiently suppressed opal and a class of inefficiency suppressed ochre mutants. The UGA alleles tested all revert consistently with NQO, in agreement with the high specificity of this mutagen for G-residues reported for bacteria and yeast. The UAA alleles show a lack or a low level of reversion with NQO. This low level of reversion is due to the low level of non-G-specific transversions at A sites of the UAA triplet. Within each class of nonsense mutants the extent of induction is site-dependent. We conclude that NQO acts predominantly on G-residues in S. pombe.  相似文献   

17.
18.
19.
20.
The Schizosaccharomyces pombe cells harboring the methionine- R-sulfoxide reductase (MsrB)-overexpressing recombinant plasmid pFMetSO exhibited better growth than vector control cells, when shifted into fresh medium containing cadmium chloride (abbreviated as Cd). Although both groups of cells contained enhanced reactive oxygen species (ROS) and nitric oxide (NO) levels in the presence of Cd, ROS and NO levels were significantly lower in the S. pombe cells harboring pFMetSO than in vector control cells. Conversely, the S. pombe cells harboring pFMetSO possessed higher total glutathione (GSH) levels and a greater reduced/oxidized GSH ratio than vector control cells under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号