首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotes have been proposed to depend on AMP deaminase as a primary step in the regulation of intracellular adenine nucleotide pools. This report describes 1) the role of AMP deaminase in adenylate metabolism in yeast cell extracts, 2) a method for large scale purification of the enzyme, 3) the kinetic properties of native and proteolyzed enzymes, 4) the kinetic reaction mechanism, and 5) regulatory interactions with ATP, GTP, MgATP, ADP, and PO4. Allosteric regulation of yeast AMP deaminase is of physiological significance, since expression of the gene is constitutive (Meyer, S. L., Kvalnes-Krick, K. L., and Schramm, V. L. (1989) Biochemistry 28, 8734-8743). The metabolism of ATP in cell-free extracts of yeast demonstrates that AMP deaminase is the sole pathway of AMP catabolism in these extracts. Purification of the enzyme from bakers' yeast yields a proteolytically cleaved enzyme, Mr 86,000, which is missing 192 amino acids from the N-terminal region. Extracts of Escherichia coli containing a plasmid with the gene for yeast AMP deaminase contained only the unproteolyzed enzyme, Mr 100,000. The unproteolyzed enzyme is highly unstable during purification. Substrate saturation plots for proteolyzed AMP deaminase are sigmoidal. In the presence of ATP, the allosteric activator, the enzyme exhibits normal saturation kinetics. ATP activates the proteolyzed AMP deaminase by increasing the affinity for AMP from 1.3 to 0.2 mM without affecting VM. Activation by ATP is more efficient than MgATP, with half-maximum activation constants of 6 and 80 microM, respectively. The kinetic properties of the proteolyzed and unproteolyzed AMP deaminase are similar. Thus, the N-terminal region is not required for catalysis or allosteric activation. AMP deaminase is competitively inhibited by GTP and PO4 with respect to AMP. The inhibition constants for these inhibitors decrease in the presence of ATP. ATP, therefore, tightens the binding of GTP, PO4, and AMP. The products of the reaction, NH3 and IMP, are competitive inhibitors against substrate, consistent with a rapid equilibrium random kinetic mechanism. Kinetic dissociation constants are reported for the binary and ternary substrate and product complexes and the allosteric modulators.  相似文献   

2.
As determined by equilibrium dialysis, bovine liver argininosuccinase of molecular weight 202,000 binds 4 mol of argininosuccinate or arginine/mol of enzyme. Negative homotropic interactions occur in the binding of both ligands at 0.15 ionic strength in the presence of phosphate. Argininosuccinate binds to two sites (Kdiss 1.6 times 10(-5) M) and four sites (Kdiss 2.9 times 10(-4) M) at low and high substrate concentration. Similarly, arginine binds to two sites (Kdiss 4.9 times 10(-4) M), and four sites (Kdiss 1.6 times 10(-3) M). At 0.05 ionic strength in Tris-HCl buffer, the four enzyme sites bind argininosuccinate independently and arginine binding remains negatively cooperative. Kinetic analysis gave double reciprocal plots that showed negative cooperatively also. The changes in Km were analogous to changes in Kdiss, thus indicating that the substrate binding sites correspond to catalytic sites. Since the catalytically active enzyme is a tetramer composed of four identical or closely similar subunits (Lusty, C.J., and Ratner, S. (1972) J. Biol. Chem. 247, 7010-7022), the present results show that each subunit contains one catalytic site. Ionic strength, phosphate ions, and GTP have each been found to influence negative cooperatively through a change in the affinity for argininosuccinate. The significance of the negative homotropic interactions and of the specific stimulation of activity by GTP is discussed with respect to different conformational forms of the enzyme and the in vivo regulation of argininosuccinase activity.  相似文献   

3.
Formiminotransferase-cyclodeaminase, a circular tetramer of dimers, binds four tetrahydropteroylpolyglutamates/octamer, which indicates that these polyglutamate sites are formed by one type of subunit interface. The transferase and deaminase are separate catalytic sites as determined by inhibition studies with (6R)-tetrahydropteroylglutamate and by the observation that the activities can operate simultaneously. Under conditions where the transferase is saturated with tetrahydropteroyl(glutamate)n substrate, exogenously added formimino intermediate is utilized by the deaminase only if at least one of the substrate/intermediate pair is a monoglutamate. These properties indicate the existence of only one polyglutamate site/pair of catalytic sites. Kinetic specificity for each activity as measured by Vm/Km increases for longer polyglutamates, but does not differentiate among 4, 5, 6, and 7 glutamates. The enzyme shows distinct preference for hexaglutamate based on Kd as well as on Km values. With all substrates, Vm of the deaminase is greater than that of the transferase, allowing for potential channeling of the intermediate between active sites. Efficiency of channeling, optimal with pentaglutamate, does not correspond with affinity for binding. This demonstrates that a steric requirement predominates over simple sequestering of intermediates on the enzyme surface as the fundamental mechanism for channeling.  相似文献   

4.
1. Rat skeletal muscle AMP deaminase (AMP aminohydrolase, EC3.5.4.6) can be inactivated by incubation with the periodate-oxidized analogue of the enzyme inhibitor GTP. 2. Nucleoside triphosphates and KCl at high concentrations protect against inactivation, while ADP has no effect. 3. The inactivation can be reversed by the addition of GTP and amino acids and made irreversible by reduction with NaBH4. This indicates that, in the binding of the oxidized GTP to the enzyme, a Schiff base is formed between the aldehyde groups of the inhibitor and amino groups of the enzyme. 4. The kinetic properties of the reduced (oxidized GTP)-AMP deaminase derivative indicate that the loss of activity results from an increase in Km while no appreciable change in V is observed; consequently, the enzyme shows positive homotropic cooperativity even in the presence of optimal KCl concentration. 5. Since the treated enzyme shows kinetic properties similar to those of the native enzyme in the presence of GTP, and since the loss of sensitivity to GTP is directly proportional to the degree of inactivation, it is concluded that the oxidized GTP specifically modifies the binding sites for GTP. 6. Binding of the radioactive oxidized GTP shows that two binding sites for this reagent exist in the AMP deaminase molecule.  相似文献   

5.
The kinetic and molecular properties of AMP deaminase [AMP aminohydrolase, EC 3.5.4.6] purified from baker's yeast (saccharomyces cerevisiae) were investigated. The enzyme was activated by ATP and dATP, but inhibited by Pi and GTP in an allosteric manner. Alkali metal ions and alkaline earth metal ions activated the enzyme to various extent. Kinetic negative cooperativity was observed in the binding of nucleoside triphosphates. Kinetic analysis showed that the number of interaction sites for AMP (substrate) and Pi (inhibitor) is two each per enzyme molecule. The molecular weight of the native enzyme was estimated to be 360,000 by sedimentation equilibrium studies. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the enzyme gave a single polypeptide band with a molecular weight of 83,000, suggesting that the native enzyme has a tetrameric structure. Baker's yeast AMP deaminase was concluded to consist of two "promoter" units which each consist of two polypeptide chains with identical molecular weight.  相似文献   

6.
1. Rat skeletal muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) at optimal KCl concentrations shows a biphasic response to increasing levels of the allosteric inhibitor ATP. 2. Up to 10 micrometer, ATP appears to convert the enzyme to a form exhibiting sigmoidal kinetics while at higher concentrations its inhibitory effect is manifested by an alteration of AMP binding to AMP deaminase indicative of negative homotropic cooperativity at about 50% saturation. 3. AMP deaminase is inactivated by incubation with the periodate oxidation product of ATP. The (oxidized ATP)--AMP deaminase complex stabilized by NaBH4 reduction shows kinetic properties similar to those of the native enzyme in the presence of high ATP concentrations. 4. A plausible explanation of the observed cooperativity is that ATP induces different conformational state of AMP deaminase subunits, causing the substrate to follow a sequential mechanism of binding to enzyme. 5. Binding of the radioactive oxidized ATP shows that 3.2 mol of this reagent bind per mol AMP deaminase.  相似文献   

7.
Mammalian mitochondrial ribosomes possess a binding site for guanine nucleotides. GTP binds in unit stoichiometry and with high affinity (Kd = 15.3 +/- 2.8 nM) to the small subunit of bovine mitochondrial ribosomes. This binding activity survives high salt washes, indicating that the nucleotide binds to an integral site within this subunit. GDP also binds to the small subunit with high affinity (Kd = 17 +/- 5.8 nm) and in unit stoichiometry. The GTP binding activity can be competed with GDP but not appreciably by other nucleotides, indicating that both GTP and GDP bind specifically and to the same site. The non-hydrolyzable analogs of GTP, guanylyl-5'-imidophosphate, and guanylyl-(beta,gamma-methylene)- diphosphonate also bind to the small subunit, but with reduced affinity. These results indicate that mammalian mitochondrial ribosomes, unlike other ribosomes, are able to interact directly with guanosine triphosphate, suggesting that the bound GTP may be involved in a novel regulatory mechanism in mitochondrial protein synthesis.  相似文献   

8.
Kinetic studies with ADP-glucose synthase show that 1,6-hexanediol bisphosphate (1,6-hexanediol-P2) is an effective activator that causes the enzyme to have a higher apparent affinity for ATP- and ADP-glucose than when fructose-1,6-P2 is the activator. Furthermore, in the presence of 1,6-hexanediol-P2, substrate saturation curves are hyperbolic shaped rather than sigmoidal shaped. CrATP behaves like a nonreactive analogue of ATP. Kinetic studies show that it is competitive with ATP. CrATP is not a competitive inhibitor of ADP-glucose. However, the combined addition of CrATP and glucose-1-P inhibits the enzyme competitively when ADP-glucose is the substrate. In binding experiments, CrATP, ATP, and fructose-P2 appear to bind to only half of the expected sites in the tetrameric enzyme, while ADP-glucose, the activators, pyridoxal-P and 1,6-hexanediol-P2, and the inhibitor, AMP, bind to four sites/tetrameric enzyme. Fructose-P2 inhibits 1,6-hexanediol-P2 binding, suggesting competition for the same sites. Glucose-1-P does not bind to the enzyme unless MgCl2 and CrATP are present and binds to four sites/tetrameric enzyme. Alternatively, CrATP in the presence of glucose-1-P binds to four sites/tetrameric enzyme. Thus, there are binding sites for the substrates, activators, and inhibitor located on each subunit and the binding sites can interact homotropically and heterotropically. ATP and fructose-P2 binding is synergistic showing heterotropic cooperativity. ATP and fructose-P2 must also be present together to effectively inhibit AMP binding. A mechanism is proposed which explains some of the kinetic and binding properties in terms of an asymmetry in the distribution of the conformational states of the four identical subunits.  相似文献   

9.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

10.
The problems of whether the kinetic and regulatory properties of AMP deaminase were modified by formation of a deaminase-myosin complex were investigated with an enzyme preparation from rat skeletal muscle. Results showed that AMP deaminase was activated by binding to myosin. Myosin-bound AMP deaminase showed a sigmoidal activity curve with respect to AMP concentration in the absence of ATP and ADP, but a hyperbolic curve in their presence. Addition of ATP and ADP doubled the V value, but did not affect the Km value. Myosin-bound AMP deaminase also gave a sigmoidal curve in the presence of alkali metal ions, whereas free AMP deaminase gave a hyperbolic curve. GTP abolished the activating effects of both myosin and ATP.  相似文献   

11.
The allosteric properties of AMP deaminase [EC 3.5.4.6] from chicken erythrocytes have been qualitatively and quantitatively accounted for by the concerted transition theory of Monod et al., on the assumption that this enzyme has different numbers of binding sites for each ligand. Theoretical curves yield a satisfactory fit for all experimental saturation functions with respect to activation by alkali metals and inhibition by Pi, assuming that the numbers of binding sites for AMP, alkali metals, and Pi are 4, 2, and 4, respectively. The enzyme was inhibited by concentrations of ATP and GTP below 0.1 and 0.25 mM, respectively, whereas activation of the enzyme was observed at ATP and GTP concentrations above 0.4 and 1.5 mM, respectively. These unusual kinetics with respect to ATP and GTP could be also accounted for by assuming 2 inhibitory and 4 activating sites for each ligand.  相似文献   

12.
Chromatography on phosphocellulose column revealed changes in the elution profile of 14 day-old chicken embryo and adult hen skeletal muscle AMP deaminase. In the presence of 5 mM potassium the enzyme from embryo muscle exhibited a sigmoid-shaped plot of the reaction rate versus substrate concentration. The increase of KCl concentration up to 100 mM diminished distinctly sigmoidicity of the plot. Micromolar concentrations of ADP or ATP activated, whereas GTP at the same concentrations inhibited the embryo and hen skeletal muscle AMP deaminase while 5 mM KCl was present in the incubation medium. 100 mM potassium concentration diminished the effect of ADP and ATP but not of GTP. Palmitoyl-CoA inhibited strongly the embryo skeletal muscle adenylate deaminase but had no effect on the activity of the hen enzyme. Alanine inhibited only the adult hen enzyme. The embryo and hen AMP deaminase differed also in the specificity to adenylate analogues and exhibited a different dAMP/AMP ratio. The data presented indicate that kinetic and regulatory properties of the two developmental forms of AMP deaminase are different.  相似文献   

13.
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.  相似文献   

14.
AMP deaminases of rat small intestine   总被引:1,自引:0,他引:1  
Phosphocellulose column chromatography revealed the existence of two forms of AMP deaminase both in whole tissue and in the intestinal epithelium. AMP deaminase I, which eluted from the column as a first activity peak, exhibited hyperbolic, nonregulatory kinetics. The substrate half-saturation constants were determined to be 0.3 and 0.7 mM at pH 6.5 and 7.2, respectively, and did not change in the presence of ATP, GTP and Pi. AMP deaminase II, which eluted from the column as a second activity peak, was strongly activated by ATP and inhibited by GTP and Pi. The S0.5 constants were 3.5 and 7.1 at pH 6.5 and 7.2, respectively. At pH 7.2 ATP (1 mM) S0.5 decreased to 2.5 mM and caused the sigmoidicity to shift to hyperbolic. The ATP half-activation constant was increased 9-fold in the presence of GTP and was not affected by Pi. Mg2+ significantly altered the effects exerted by nucleotides. The S0.5 value was lowered 10-fold in the presence of MgATP and 5-fold in the presence of MgATP, MgGTP and Pi. When MgATP was present, AMP deaminase II from rat small intestine was less susceptible to inhibition by GTP and Pi. A comparison of the kinetic properties of the enzyme, in particular the greater than 100% increase in Vmax observed in the presence of MgCl2 at low (1 mM) substrate concentration, indicates that MgATP is the true physiological activator. GuoPP[NH]P at low concentrations, in contrast to GTP, did not affect the enzyme and even activated it at concentrations above 0.2 mM. We postulate that AMP deaminase II may have a function similar to that of the rat liver enzyme. The significance of the existence of an additional, non-regulatory form of AMP deaminase in rat small intestine is discussed.  相似文献   

15.
cGMP-dependent protein kinase binds 4 mol cGMP/mol enzyme to two different sites. Binding to site 1 (apparent Kd 17 nM) shows positive cooperativity and is inhibited by Mg . ATP, whereas binding to site 2 (apparent Kd 100-150 nM) is non-cooperative and not affected by Mg . ATP. Autophosphorylation of the enzyme abolishes the cooperative binding to site 1 and the inhibitory effect of Mg . ATP. The association (K1) and dissociation (K-1) rate constant for site 2 and K1 for site 1 are not affected significantly by Mg . ATP or autophosphorylation. The dissociation rate from site 1 measured in the presence of 1 mM unlabelled cGMP is decreased threefold and over tenfold by Mg . ATP and autophosphorylation, respectively. In contrast, the dissociation rate from site 1 measured after a 500-fold dilution of the enzyme-ligand complex is 100-fold faster than that determined in the presence of 1 mM cGMP and is only slightly influenced by Mg . ATP or autophosphorylation. Only Kd values calculated with the latter K-1 values are similar to the Kd values obtained by equilibrium binding. These results suggest that autophosphorylation of cGMP-dependent protein kinase affects mainly the binding characteristics of site 1.  相似文献   

16.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site. The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP. Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 4 . 10(-8) M) belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2--5 . 10(-6) M) was demonstrated by the inhibitory effect of 10(-5) M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

17.
Two molecular forms of AMP deaminase have been revealed by phosphocellulose column chromatography in the liver of uricotelic lizard. The calculated S0.5 value of the purified lizard liver AMP deaminase was 2.5 +/- 0.1 for the form I and 3.6 +/- 0.4 for the form II. Both forms of the enzyme were activated by ATP and ADP but the form II to a much higher extent. GTP activated only the form II and inorganic phosphate inhibited both forms. The occurrence of multiple forms of liver AMP deaminase in uricotelic species, as well as its difference from the mammalian enzyme regulation by GTP is suggested to be connected with the uricotelism in these animals.  相似文献   

18.
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.  相似文献   

19.
In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.  相似文献   

20.
The beta subunit isolated from the chloroplast ATP synthase F1 (CF1) has a single dissociable nucleotide binding site, consistent with the proposed function of this subunit in nucleotide binding and catalysis. The beta subunit bound the nucleotide analogs trinitrophenyl-ATP (TNP-ATP) or trinitrophenyl-ADP (TNP-ADP) with nearly equal affinities (Kd = 1-2 microM) but did not bind trinitrophenyl-AMP. Both ATP and ADP effectively competed with TNP-ATP for binding. Other nucleoside triphosphates were also able to compete with TNP-ATP for binding to beta; their order of effectiveness (ATP greater than GTP, ITP greater than CTP) mimicked the normal substrate specificity of CF1. The single nucleotide binding site on the isolated beta subunit very closely resembles the low affinity catalytic site (site 3) of CF1 (Bruist, M.F., and Hammes, G. G. (1981) Biochemistry 20, 6298-6305), suggesting that tight nucleotide binding by other sites on the enzyme involves other CF1 subunits in addition to the beta subunit. The results are inconsistent with an earlier report (Frasch, W.D., Green, J., Caguial, J., and Mejia, A. (1989) J. Biol. Chem. 264, 5064-5069), which suggested more than one nucleotide binding site per beta subunit. Binding of nucleotides to the isolated beta subunit was eliminated by a brief heat treatment (40 degrees C for 10 min) of the protein. A small change in the circular dichroism spectrum of beta accompanied the heat treatment indicating that a localized (rather than global) change in the folding of beta, involving at least part of the nucleotide binding domain, had occurred. Also accompanying the loss of nucleotide binding was a loss of the reconstitutive capacity of the beta subunit. ATP protected against the effects of the heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号