首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PCR primers that amplify fungal rRNA genes from environmental samples   总被引:16,自引:0,他引:16  
Two PCR primer pairs were designed to amplify rRNA genes (rDNA) from all four major phyla of fungi: Ascomycota, Basidiomycota, Chytridomycota, and Zygomycota. PCRs performed with these primers showed that both pairs amplify DNA from organisms representing the major taxonomic groups of fungi but not from nonfungal sources. To test the ability of the primers to amplify fungal rDNA from environment samples, clone libraries from two avocado grove soils were constructed and analyzed. These soils possess different abilities to inhibit avocado root rot caused by Phythophthora cinnamomi. Analysis of the two rDNA clone libraries revealed differences in the two fungal communities. It also revealed a markedly different depiction of the soil fungal community than that generated by a culture-based analysis, confirming the value of rDNA-based approaches for identifying organisms that may not readily grow on agar media. Additional evidence of the usefulness of the primers was obtained by identifying fungi associated with avocado leaves. In both the soil and leaf analyses, no nonfungal rDNA sequences were identified, illustrating the selectivity of these PCR primers. This work demonstrates the ability of two newly developed PCR primer sets to amplify fungal rDNA from soil and plant tissue, thereby providing unique tools to examine this vast and mostly undescribed community of organisms.  相似文献   

2.
PCR Primers That Amplify Fungal rRNA Genes from Environmental Samples   总被引:14,自引:2,他引:14       下载免费PDF全文
Two PCR primer pairs were designed to amplify rRNA genes (rDNA) from all four major phyla of fungi: Ascomycota, Basidiomycota, Chytridomycota, and Zygomycota. PCRs performed with these primers showed that both pairs amplify DNA from organisms representing the major taxonomic groups of fungi but not from nonfungal sources. To test the ability of the primers to amplify fungal rDNA from environment samples, clone libraries from two avocado grove soils were constructed and analyzed. These soils possess different abilities to inhibit avocado root rot caused by Phythophthora cinnamomi. Analysis of the two rDNA clone libraries revealed differences in the two fungal communities. It also revealed a markedly different depiction of the soil fungal community than that generated by a culture-based analysis, confirming the value of rDNA-based approaches for identifying organisms that may not readily grow on agar media. Additional evidence of the usefulness of the primers was obtained by identifying fungi associated with avocado leaves. In both the soil and leaf analyses, no nonfungal rDNA sequences were identified, illustrating the selectivity of these PCR primers. This work demonstrates the ability of two newly developed PCR primer sets to amplify fungal rDNA from soil and plant tissue, thereby providing unique tools to examine this vast and mostly undescribed community of organisms.  相似文献   

3.
Green SJ  Freeman S  Hadar Y  Minz D 《Mycologia》2004,96(3):439-451
The Pyrenomycetes, defined physiologically by the formation of a flask-shaped fruiting body present in the sexual form, are a monophyletic group of fungi that consist of a wide diversity of populations including human and plant pathogens. Based on sequence analysis of 18S ribosomal DNA (rDNA), rDNA regions conserved among the Pyrenomycetes but divergent among other organisms were identified and used to develop selective PCR primers and a highly specific primer set. The primers presented here were used to amplify large portions of the 18S rDNA as well as the entire internal transcribed spacer (ITS) region (ITS 1, 5.8S rDNA, and ITS 2). In addition to database searches, the specificity of the primers was verified by PCR amplification of DNA extracted from pure culture isolates and by sequence analysis of fungal rDNA PCR-amplified from environmental samples. In addition, denaturing gradient gel electrophoresis (DGGE) analyses were performed on closely related Colletotrichum isolates serving as a model pathogenic genus of the Pyrenomycetes. Although both ITS and 18S rDNA DGGE analyses of Colletotrichum were consistent with a phylogeny established from sequence analysis of the ITS region, DGGE analysis of the ITS region was found to be more sensitive than DGGE analysis of the 18S rDNA. This study introduces molecular tools for the study of Pyrenomycete fungi by the development of two specific primers, demonstration of the enhanced sensitivity of ITS-DGGE for typing of closely related isolates and application of these tools to environmental samples.  相似文献   

4.
Primer sets were designed to target specific 16S ribosomal DNA (rDNA) sequences of photosynthetic bacteria, including the green sulfur bacteria, the green nonsulfur bacteria, and the members of the Heliobacteriaceae (a gram-positive phylum). Due to the phylogenetic diversity of purple sulfur and purple nonsulfur phototrophs, the 16S rDNA gene was not an appropriate target for phylogenetic rDNA primers. Thus, a primer set was designed that targets the pufM gene, encoding the M subunit of the photosynthetic reaction center, which is universally distributed among purple phototrophic bacteria. The pufM primer set amplified DNAs not only from purple sulfur and purple nonsulfur phototrophs but also from Chloroflexus species, which also produce a reaction center like that of the purple bacteria. Although the purple bacterial reaction center structurally resembles green plant photosystem II, the pufM primers did not amplify cyanobacterial DNA, further indicating their specificity for purple anoxyphototrophs. This combination of phylogenetic- and photosynthesis-specific primers covers all groups of known anoxygenic phototrophs and as such shows promise as a molecular tool for the rapid assessment of natural samples in ecological studies of these organisms.  相似文献   

5.
A rapid method based on previously described DNA extraction procedures was developed for the isolation of DNA from dental plaque samples. The isolated DNA is suitable for use in the PCR. Freeze-thawing, cell wall-degrading enzymes, and guanidine isothiocyanate were used to lyse cells and release DNA. The released DNA was adsorbed onto diatomaceous earth and purified by washing with guanidine isothiocyanate, ethanol, and acetone. The purified DNA was released from the diatomaceous earth into an aqueous buffer and analyzed by PCR with 16S rDNA primers (rDNA is DNA coding for rRNA). As judged from studies with pure cultures of a number of bacterial species, gram-negative and gram-positive organisms were lysed equally well by this procedure. The amount of PCR product was proportional to the number of cells analyzed over the range tested, 500 to 50,000 cells. On the basis of studies with plaque samples that were spiked with known quantities of the oral bacterium Treponema denticola, the DNA prepared from plaque was free of substances inhibitory to PCR. This method should have utility in molecular genetic studies of bacterial populations not only in uncultured plaque samples but also in other complex bacterial assemblages.  相似文献   

6.
Quahog Parasite Unknown (QPX) is a protistan parasite that causes disease and mortality in the hard clam Mercenaria mercenaria. PCR primers and DNA oligonucleotide probes were designed and evaluated for sensitivity and specificity for the QPX organism specifically and for the phylum Labyrinthulomycota in general. The best performing QPX-specific primer pair amplified a 665 bp region of the QPX small-subunit ribosomal DNA (SSU rDNA) and detected as little as 1 fg cloned QPX SSU rDNA and 20 fg QPX genomic DNA. The primers did not amplify DNA of uninfected hard clams M. mercenaria or of the thraustochytrids Schizochytrium aggregatum, Thraustochytrium aureum, and T. striatum. The general labyrinthulomycete primers, which were designed to offer broader specificity than the QPX primers, amplified a 435 bp region of SSU rDNA from QPX, and a 436 to 437 bp region of SSU rDNA from S. aggregatum, T. aureum, and T. striatum, but did not amplify that of the clam M. mercenaria. Field validation of the QPX-specific primer pair, through comparative sampling of 224 clams collected over a 16 mo period from a QPX endemic site in Virginia, USA, indicated that the PCR assay is equivalent to histological diagnosis if initially negative PCR products are reamplified. Oligonucleotide DNA probes specific for QPX and the phylum Labyrinthulomycota were evaluated for in situ hybridization assays of cell smears or paraffin-embedded tissues. Two DNA probes for QPX offered limited sensitivity when used independently; however, when used together as a probe cocktail, sensitivity was greatly enhanced. The probe cocktail hybridized to putative QPX organisms in tissues of hard clams collected from Virginia, New Jersey, Massachusetts and Canada, suggesting that the QPX organisms in these areas are either very closely related or the same species. The QPX probe cocktail did not hybridize with clam tissue or with the thraustochytrids S. aggregatum, T. aureum, and T. striatum. The labyrinthulomycete DNA probe hybridized with QPX and the 3 thraustochytrids, with no background hybridization to clam tissue. SSU rDNA sequences were obtained for the putative QPX organisms from geographically distinct sites. Phylogenetic analyses based on the QPX and Labyrinthulomycota sequences confirmed earlier reports that QPX is a member of this phylum, but could not definitively demonstrate that all of the QPX organisms were the same species.  相似文献   

7.
Two techniques were developed for the analysis of non-cultivable mollicutes in insects. The first was aimed at detecting organisms belonging to undiscovered groups within the phytoplasma clade. After prescreening by polymerase chain reaction with phytoplasma-specific primers, nucleic acids from 54 positive samples were amplified using phytoplasma-specific fluorescein-labelled primers flanking the 16S-23S rDNA spacer region, which is variable in length among the phytoplasmas. The sizes of all the detected products were only those expected for already-described phytoplasma subclades. It was also shown that a single leafhopper might carry different phytoplasmas, at similar or very different relative concentrations. The second technique, based on the heteroduplex mobility assay, was designed for the detection of organisms phylogenetically similar to phytoplasmas but not recognized by the specific primer pair. As a result, signals generated by ribosomal DNA of organisms which appear to be closely related but not identical to phytoplasmas were detected.  相似文献   

8.
Two techniques were developed for the analysis of non-cultivable mollicutes in insects. The first was aimed at detecting organisms belonging to undiscovered groups within the phytoplasma clade. After prescreening by polymerase chain reaction with phytoplasma-specific primers, nucleic acids from 54 positive samples were amplified using phytoplasma-specific fluorescein-labelled primers flanking the 16S−23S rDNA spacer region, which is variable in length among the phytoplasmas. The sizes of all the detected products were only those expected for already-described phytoplasma subclades. It was also shown that a single leafhopper might carry different phytoplasmas, at similar or very different relative concentrations. The second technique, based on the heteroduplex mobility assay, was designed for the detection of organisms phylogenetically similar to phytoplasmas but not recognized by the specific primer pair. As a result, signals generated by ribosomal DNA of organisms which appear to be closely related but not identical to phytoplasmas were detected.  相似文献   

9.
AIMS: Nine sets of PCR primers targeting Salmonella were evaluated for their specificity with pure cultures of intestinal-associated bacteria prior to their application to Salmonella detection in faecal samples. METHODS AND RESULTS: Gene targets of PCR primers included: 16S rDNA, a Salmonella pathogenicity island I virulence gene, Salmonella enterotoxin gene (stn), invA gene, Fur-regulated gene, histidine transport operon, junction between SipB and SipC virulence genes, Salmonella-specific repetitive DNA fragment, and multiplex targeting invA gene and spvC gene of the virulence plasmid. Fifty-two Salmonella strains were used to determine sensitivity; five strains from related genera and 45 intestinal bacteria were used to evaluate specificity. All primers amplified DNA from Salmonella strains, although two primer sets failed to amplify Salmonella DNA from either Salmonella bongori (hilA) or subgroups VI or VII (16S rDNA). There was no detected amplification of DNA from related bacterial genera with any of nine PCR assays. Six of the PCR assays amplified DNA for some intestinal bacteria. CONCLUSIONS: Only three primer pairs were determined to be suitable for application of PCR amplification of Salmonella in faecal samples - 16S rDNA, stn and histidine transport operon. We are currently evaluating their sensitivity of detection of Salmonella in faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the importance of internal lab validation of PCR primers prior to application to the type of samples of interest. Information from this evaluation can be applied in other labs to facilitate choosing Salmonella PCR primers.  相似文献   

10.
Primer sets were designed to target specific 16S ribosomal DNA (rDNA) sequences of photosynthetic bacteria, including the green sulfur bacteria, the green nonsulfur bacteria, and the members of the Heliobacteriaceae (a gram-positive phylum). Due to the phylogenetic diversity of purple sulfur and purple nonsulfur phototrophs, the 16S rDNA gene was not an appropriate target for phylogenetic rDNA primers. Thus, a primer set was designed that targets the pufM gene, encoding the M subunit of the photosynthetic reaction center, which is universally distributed among purple phototrophic bacteria. The pufM primer set amplified DNAs not only from purple sulfur and purple nonsulfur phototrophs but also from Chloroflexus species, which also produce a reaction center like that of the purple bacteria. Although the purple bacterial reaction center structurally resembles green plant photosystem II, the pufM primers did not amplify cyanobacterial DNA, further indicating their specificity for purple anoxyphototrophs. This combination of phylogenetic- and photosynthesis-specific primers covers all groups of known anoxygenic phototrophs and as such shows promise as a molecular tool for the rapid assessment of natural samples in ecological studies of these organisms.  相似文献   

11.
AIMS: To examine bacterial contamination of passenger aircraft and to identify aeroplane environments posing the greatest potential health risk. METHODS AND RESULTS: DNA was extracted from ten environmental samples collected on four different flights (three domestic, one international) from a variety of surfaces frequently touched by passengers. PCR clone libraries were made from the DNA samples using bacterial-specific 16S ribosomal DNA (rDNA) primers. A total of 271 bacterial rDNA sequences were obtained. We used BLAST analysis of the rDNA clone sequences to identify sequences in Genbank with the highest sequence similarity. The majority of the rDNA clones obtained from aeroplane environments were more than 97% identical to rDNA sequences from cultured bacterial species. Samples collected from the cabin surfaces (e.g., tray tables and arm rests) had undetectable levels of DNA and produced no PCR products. Bacterial diversity was highest on lavatory surfaces, including door handles, toilet handles, and sink faucets. Sequence data from these surfaces detected species from 58 different bacterial genera, and many of the best BLAST hits matched rDNA sequences of cultured species known to be opportunistic pathogens. The most frequently observed species came from five genera commonly associated with humans: Streptococcus, Staphylococcus, Cornybacterium, Proprionibacterium and Kocuria. CONCLUSIONS: The results show that there is a large diversity of bacterial contamination on aeroplanes, including organisms known to be opportunistic pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results indicate that aeroplanes have the potential to spread an enormous diversity of bacterial species among passengers and destinations. Aeroplane lavatories present an especially significant concern to public health.  相似文献   

12.
At a sea-based, solid waste disposal site, methanogenic organisms were quantified by molecular approaches. The samples collected for analysis were from anaerobic leachate of the landfill site. When the DNA extracted from the leachate was examined by a quantitative PCR method using domain-specific 16S rDNA primers, archaeal DNA represented 2-3% of the total extracted DNA. On the basis of cloning and sequence comparison of the archaeal PCR products, more than half of the sequences belonged to Euryarchaeota, particularly relatives of the genus Methanosaeta. The cloning analysis suggested that the majority of methane emitted from the landfill site originated from the acetate-utilizing Methanosaeta.  相似文献   

13.
Phylogenetic analysis of the bacterial communities in marine sediments.   总被引:25,自引:13,他引:12       下载免费PDF全文
For the phylogenetic analysis of microbial communities present in environmental samples microbial DNA can be extracted from the sample, 16S rDNA can be amplified with suitable primers and the PCR, and clonal libraries can be constructed. We report a protocol that can be used for efficient cell lysis and recovery of DNA from marine sediments. Key steps in this procedure include the use of a bead mill homogenizer for matrix disruption and uniform cell lysis and then purification of the released DNA by agarose gel electrophoresis. For sediments collected from two sites in Puget Sound, over 96% of the cells present were lysed. Our method yields high-molecular-weight DNA that is suitable for molecular studies, including amplification of 16S rRNA genes. The DNA yield was 47 micrograms per g (dry weight) for sediments collected from creosote-contaminated Eagle Harbor, Wash. Primers were selected for the PCR amplification of (eu)bacterial 16S rDNA that contained linkers with unique 8-base restriction sites for directional cloning. Examination of 22 16S rDNA clones showed that the surficial sediments in Eagle Harbor contained a phylogenetically diverse population of organisms from the Bacteria domain (G. J. Olsen, C. R. Woese, and R. Overbeek, J. Bacteriol. 176:1-6, 1994) with members of six major lineages represented: alpha, delta, and gamma Proteobacteria; the gram-positive high G+C content subdivision; clostridia and related organisms; and planctomyces and related organisms. None of the clones were identical to any representatives in the Ribosomal Database Project small subunit RNA database. The analysis of clonal representives in the first report using molecular techniques to determine the phylogenetic composition of the (eu)bacterial community present in coastal marine sediments.  相似文献   

14.
Aims: To identify the microbiota in meju, fermented cooked soya beans, that may directly affect the microbial communities of Korean fermented soya bean foods. Methods and Results: Using conventional bacterial 16S rDNA, bacilli‐specific 16S rDNA or fungi 18S rDNA‐specific primers, PCR products were amplified through a series of PCRs using the DNA extracted from ten meju samples. The amplicons were analysed using denaturing gradient gel electrophoresis (DGGE), which showed that Enterococcus durans was commonly detected in nine of ten meju samples. Bacillus subtilis was shown to be the major strain of bacilli in the samples tested. Based on the DGGE analysis of fungi in meju, we determined that Absidia corymbifera, Aspergillus sp. and Candida rugosa were the main fungi in the tested samples. Conclusions: A variety of bacterial and fungal micro‐organisms were identified in meju samples, in addition to the micro‐organisms already known to be present. Significance and Impact of the Study: This is the first report showing the differences and similarities in the populations of micro‐organisms in meju samples using nested PCR‐DGGE, a culture‐independent method. The results may be applicable to the development of improved meju, in which the indigenous micro‐organisms required for fermentation can be standardized.  相似文献   

15.
Using the polymerase chain reaction (PCR) and two primers for conserved regions of the small subunit ribosomal RNA (SSU-rRNA.) of Microsporidia, a DNA segment about 1,195 base pairs long was amplified from a DNA template prepared from purified spores of the microsporidian species Pleistophora anguillarum. These spores had been isolated from adult eels ( Anguilla japonica ) with "Beko Disease." A comparison of sequence data from other microsporidian species showed P. anguillarum SSU-rRNA to be most similar to Vavraia oncoperae. When juvenile eels were artificially infected with P. anguillarum , enzyme-linked immunosorbent assay could detect a positive infection only 12 days post-infection. However, when suitable PCR primers were used, a DNA fragment of about 0.8 kb was detected from these juvenile eels after only 3 days post-infection. No PCR product was obtained with templates prepared from clinically healthy control animals.  相似文献   

16.
PCR primers specific to the 16S ribosomal DNA (rDNA) of magnetic cocci were designed and used to amplify DNA from magnetically isolated magnetic cocci. The PCR products were subcloned by ligation into plasmid vector pCRII, and five clones containing approximately 270-bp fragments of amplified DNA were sequenced. The specific primers were also used to detect magnetic coccus 16S rDNA in environmental samples. Magnetic coccus 16S rDNA was amplified from the water column above sediment kept in an anoxic environment in the laboratory, but little was amplified from a water column kept in an oxic environment. These results suggest that magnetic cocci in the water column in an anoxic environment had migrated there from the sediment as a response to the microoxic or anoxic conditions, rather than having been present previously in a nonmagnetic form and having become magnetic due to these conditions. The specific primers were also used to detect magnetic cocci in aquatic sediment. DNA was extracted from sediment by direct lysis and purified for use as a PCR template by electrophoresis on an agarose-polyvinylpyrrolidone gel. 16S rDNA was then amplified and subcloned, and two clones were sequenced. The clones were screened for chimeric DNA by comparing sections of each with the GenBank database.  相似文献   

17.
A protocol for efficient extraction of fungal DNA from micromycetes colonising painted art objects was developed. Polymerase chain reaction (PCR) inhibitors were successfully removed by a combined application of a Chelex-100 adsorption resin and a Geneclean Kit for Ancient DNA. Universal fungal primers for PCR amplification of 28S rDNA (U1 and U2) were tested for their applicability in denaturing gradient gel electrophoresis (DGGE) analysis of fungal communities. Artificially produced mortar samples inoculated with fungal pure cultures isolated from mural paintings were used as model objects for DNA extractions and DGGE analysis. Good resolution in DGGE was achieved using 260-bp rDNA fragments amplified with U1/DGGE and U2 primers directly from model communities.  相似文献   

18.
Microsporidian parasites infect almost all invertebrate and vertebrate hosts and have significant effects on individual and population fitness. Phylogenetic analysis demonstrates that the phylum is highly divergent and that some lineages show strong associations with host taxa. We here examine the diversity and distribution of parasites in gastropod molluscs to test for host-parasite co-association. 16 populations representing 10 species of freshwater snails were screened using microsporidian specific small subunit rDNA primers. Four novel microsporidian parasite sequences were detected within populations of three host species from the genera Bulinus, Biomphalaria and Planorbis. Prevalence ranged from 5 to 84%. Phylogenetic analysis of these novel sequences reveals that they group together as a paraphyletic assemblage in the microsporidian tree basal to the two lineages containing the genera Encephalitozoon and Nosema. Preliminary observation of one microsporidian infection, show parasites distributed in all tissue systems of Bulinus globosus. However, infection is most prevalent in the digestive gland while also in the egg sacs, suggesting that the microsporidium is using a mixed strategy of horizontal and vertical transmission in this population.  相似文献   

19.
20.
Ribosomal DNA: molecular evolution and phylogenetic inference.   总被引:79,自引:0,他引:79  
Ribosomal DNA (rDNA) sequences have been aligned and compared in a number of living organisms, and this approach has provided a wealth of information about phylogenetic relationships. Studies of rDNA sequences have been used to infer phylogenetic history across a very broad spectrum, from studies among the basal lineages of life to relationships among closely related species and populations. The reasons for the systematic versatility of rDNA include the numerous rates of evolution among different regions of rDNA (both among and within genes), the presence of many copies of most rDNA sequences per genome, and the pattern of concerted evolution that occurs among repeated copies. These features facilitate the analysis of rDNA by direct RNA sequencing, DNA sequencing (either by cloning or amplification), and restriction enzyme methodologies. Constraints imposed by secondary structure of rRNA and concerted evolution need to be considered in phylogenetic analyses, but these constraints do not appear to impede seriously the usefulness of rDNA. An analysis of aligned sequences of the four nuclear and two mitochondrial rRNA genes identified regions of these genes that are likely to be useful to address phylogenetic problems over a wide range of levels of divergence. In general, the small subunit nuclear sequences appear to be best for elucidating Precambrian divergences, the large subunit nuclear sequences for Paleozoic and Mesozoic divergences, and the organellar sequences of both subunits for Cenozoic divergences. Primer sequences were designed for use in amplifying the entire nuclear rDNA array in 15 sections by use of the polymerase chain reaction; these "universal" primers complement previously described primers for the mitochondrial rRNA genes. Pairs of primers can be selected in conjunction with the analysis of divergence of the rRNA genes to address systematic problems throughout the hierarchy of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号