首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Lipids are the major form of carbon storage in arbuscular-mycorrhizal fungi. We studied fatty acid synthesis by Glomus intraradices and Gigaspora rosea. [14C]Acetate and [14C]sucrose were incorporated into a synthetic culture medium to test fatty acid synthetic ability in germinating spores (G. intraradices and G. rosea), mycorrhized carrot roots, and extraradical fungal mycelium (G. intraradices). Germinating spores and extraradical hyphae could not synthesize 16-carbon fatty acids but could elongate and desaturate fatty acids already present. The growth stimulation of germinating spores by root exudates did not stimulate fatty acid synthesis. 16-Carbon fatty acids (16:0 and 16:1) were synthesized only by the fungi in the mycorrhized roots. Our data strongly suggest that the fatty acid synthase activity of arbuscular-mycorrhizal fungi is expressed exclusively in the intraradical mycelium and indicate that fatty acid metabolism may play a major role in the obligate biotrophism of arbuscular-mycorrhizal fungi.  相似文献   

2.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1omega5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1omega5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1omega5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.  相似文献   

3.
The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1omega5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating (13)C enrichment of 16:1omega5 and compared it with (13)C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [(13)C]glucose. The (13)C enrichment of neutral lipid fatty acid 16:1omega5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for (13)C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1omega5 than for the root specific neutral lipid fatty acid 18:2omega6,9. We labeled plant assimilates by using (13)CO(2) in whole-plant experiments. The extraradical mycelium often was more enriched for (13)C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between (13)C enrichment in neutral lipid fatty acid 16:1omega5 and total (13)C in extraradical mycelia in different systems (r(2) = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the (13)C enrichment of 16:1omega5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.  相似文献   

4.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1ω5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1ω5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1ω5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.  相似文献   

5.
The use of monoxenic cultures of the obligately biotrophic vesicular arbuscular fungus Glomus intraradices now permits investigation of the lipid metabolism of this organism. In bicompartmental culture plates, sporulating extraradical hyphae can be obtained, totally free of roots, and then provided with 14C-acetate as lipid precursor. Three experimental stages were studied: i) stage A, symbiotic stage corresponding to the fungus still attached to the host plant roots, ii) stage B, consisting of the fungus detached from the host roots, iii) stage C, germinating spores. In each case, the fungus proved to be able to synthesise its own lipids: 1,2- and 1,3-diacylglycerols, triacylglycerols, phospholipids, sterols and free fatty acids, de novo. Lipid metabolism varied with the experimental conditions. Phospholipid synthesis was intensive in germinating spores. Thus the obligately biotrophic status of this fungus cannot be explained by a deficiency in synthesis of these various lipid classes.  相似文献   

6.
Rhody D  Stommel M  Roeder C  Mann P  Franken P 《Mycorrhiza》2003,13(3):137-142
RNA was isolated from spores of different arbuscular mycorrhizal (AM) fungi and used for RT-PCR with degenerate primers for beta-tubulin genes. PCR products were cloned and the sequence of several clones was analysed for each fragment. Comparison of sequences identified two loci for beta-tubulin genes with different GC content and codon usage. Btub1 sequences were most similar to beta-tubulin genes from the Oomycota, while Btub2 sequences showed highest similarity to sequences from the Zygomycota. RT-PCR experiments were carried out to monitor RNA accumulation patterns of Btub1 and Btub2 in asymbiotic germinating spores and in symbiotic extraradical hyphae of three different AM fungi. This indicated that Btub1 is constitutively expressed in Gigaspora rosea, but down-regulated during symbiosis in Glomus mosseae and Glomus intraradices. In contrast, Btub2 showed constitutive expression in the two Glomus species, but down-regulation in G. rosea. Further analysis of different fungi indicated that Btub2 primers could be used to specifically monitor RNA accumulation of AM fungi in environmental samples.  相似文献   

7.
Arbuscule-forming fungi in the order Glomales form obligate endomycorrhizal associations with plants that make them difficult to quantify, and taxonomy of the group is only beginning to be objectively understood. Fatty acid methyl ester (FAME) profiles were analyzed to assess the diversity and quantity of fatty acids in 53 isolates of 24 glomalean species. Spores and endomycorrhizal roots of sudan grass (Sorghum sudanense) and the citrus rootstock Carrizo citrange (Poncirus trifoliata x Citrus sinensis) were examined. Spores yielded reproducible FAME profiles from replicate spore collections extracted from soil pot cultures despite being grown in association with a host plant and with contaminating microorganisms present. Unweighted pair group analysis revealed relatively tight clusters of groups at the intraspecific, specific, and generic levels; however, lipid profiles at the family level were convergent. Thus, FAME profile comparisons provided a robust measure of similarity below the family level. FAME profiles in sudan grass roots containing vesicles and/or spores of Glomus intraradices were more similar to spore profiles than to profiles from nonmycorrhizal roots. The FAME profiles for Gigaspora species, which do not form vesicles or spores in roots, were less distinct from nonmycorrhizal roots. G. intraradices and G. rosea produced fatty acids in roots that were distinguishable from each other as well as from the host root. Production in citrus roots of the fatty acid 16:1(inf(omega)5) cis by two Glomus species was correlated with the development of mycorrhizal colonization as measured by clearing and staining procedures and by estimates of total incidence and vesicle intensity. FAME analysis of roots not only provided a measure of colonization development but also served as an index of carbon allocated to intraradical fungal growth and lipid storage.  相似文献   

8.
The rate of global deposition of Cd, Pb, and Zn has decreased over the past few decades, but heavy metals already in the soil may be mobilized by local and global changes in soil conditions and exert toxic effects on soil microorganisms. We examined in vitro effects of Cd, Pb, and Zn on critical life stages in metal-sensitive ecotypes of arbuscular mycorrhizal (AM) fungi, including spore germination, presymbiotic hyphal extension, presymbiotic sporulation, symbiotic extraradical mycelium expansion, and symbiotic sporulation. Despite long-term culturing under the same low-metal conditions, two species, Glomus etunicatum and Glomus intraradices, had different levels of sensitivity to metal stress. G. etunicatum was more sensitive to all three metals than was G. intraradices. A unique response of increased presymbiotic hyphal extension occurred in G. intraradices exposed to Cd and Pb. Presymbiotic hyphae of G. intraradices formed presymbiotic spores, whose initiation was more affected by heavy metals than was presymbiotic hyphal extension. In G. intraradices grown in compartmentalized habitats with only a portion of the extraradical mycelium exposed to metal stress, inhibitory effects of elevated metal concentrations on symbiotic mycelial expansion and symbiotic sporulation were limited to the metal-enriched compartment. Symbiotic sporulation was more sensitive to metal exposure than symbiotic mycelium expansion. Patterns exhibited by G. intraradices spore germination, presymbiotic hyphal extension, symbiotic extraradical mycelium expansion, and sporulation under elevated metal concentrations suggest that AM fungi may be able to survive in heavy metal-contaminated environments by using a metal avoidance strategy.  相似文献   

9.
The influence of external phosphorus (P) on carbon (C) allocation and metabolism as well as processes related to P metabolism was studied in monoxenic arbuscular mycorrhiza cultures of carrot (Daucus carota). Fungal hyphae of Glomus intraradices proliferated from the solid minimal medium containing the colonized roots into C-free liquid minimal medium with different P treatments. The fungus formed around three times higher biomass in P-free liquid medium than in medium with 2.5 mM inorganic P (high-P). Mycelium in the second experiment was harvested at an earlier growth stage to study metabolic processes when the mycelium was actively growing. P treatment influenced the root P content and [(13)C]glucose administered to the roots 7 d before harvest gave a negative correlation between root P content and (13)C enrichment in arbuscular mycorrhiza fungal storage lipids in the extraradical hyphae. Eighteen percent of the enriched (13)C in extraradical hyphae was recovered in the fatty acid 16:1omega5 from neutral lipids. Polyphosphate accumulated in hyphae even in P-free medium. No influence of P treatment on fungal acid phosphatase activity was observed, whereas the proportion of alkaline-phosphatase-active hyphae was highest in high-P medium. We demonstrated the presence of a motile tubular vacuolar system in G. intraradices. This system was rarely seen in hyphae subjected to the highest P treatment. We concluded that the direct responses of the extraradical hyphae to the P concentration in the medium are limited. The effects found in hyphae seemed instead to be related to increased availability of P to the host root.  相似文献   

10.
The present work describes the morphogenesis and cytological characteristics of 'branched absorbing structures' (BAS, formely named arbuscule-like structures, ALS), small groups of dichotomous hyphae formed by the extraradical mycelium of arbuscular mycorrhizal (AM) fungi. Monoxenic cultures of the AM fungus Glomus intraradices Smith & Schenck and tomato ( Lycopersicum esculentum Mill.) roots allowed the continuous, non-destructive study of BAS development. These structures were not observed in axenic cultures of the fungus under different nutritional conditions or in unsuccessful (asymbiotic) monoxenic cultures. However, extraradical mycelium of G. intraradices formed BAS immediately after fungal penetration of the host root and establishment of the symbiosis. The average BAS development time was 7 d under our culture conditions, after which they degenerated, becoming empty septate structures. Certain BAS were closely associated with spore formation, appearing at the spore's substending hypha. Branches of these spore-associated BAS (spore-BAS) usually formed spores. Electron microscopy studies revealed that BAS and arbuscules show several ultrastructural similarities. The possible role of BAS in nutrient uptake by the mycorrhizal plant is discussed.  相似文献   

11.
1. Fatty acid synthesis was studied in microsomal preparations from germinating pea (Pisum sativum). 2. The preparations synthesized a mixture of saturated fatty acids up to a chain length of C(24) from [(14)C]malonyl-CoA. 3. Whereas hexadecanoic acid was made de novo, octadecanoic acid and icosanoic acid were synthesized by elongation. 4. The products formed during [(14)C]malonyl-CoA incubation were analysed, and unesterified fatty acids and polar lipids were found to be major products. [(14)C]Palmitic acid represented a high percentage of the acyl-carrier protein esters, whereas (14)C-labelled very-long-chain fatty acids were mainly present as unesterified fatty acids. CoA esters were minor products. 5. The addition of exogenous lipids to the incubation system usually resulted in stimulation of [(14)C]malonyl-CoA incorporation into fatty acids. The greatest stimulation was obtained with dipalmitoyl phosphatidylcholine. Both exogenous palmitic acid and dipalmitoyl phosphatidylcholine increased the amount of [(14)C]-stearic acid synthesized, relative to [(14)C]palmitic acid. Addition of stearic acid increased the amount of [(14)C]icosanoic acid formed. 6. [(14)C]Stearic acid was elongated more effectively to icosanoic acid than [(14)C]stearoyl-CoA, and its conversion was not decreased by addition of unlabelled stearoyl-CoA. 7. Incorporation of [(14)C]malonyl-CoA into fatty acids was markedly decreased by iodoacetamide and 5,5'-dithiobis-(2-nitrobenzoic acid). Palmitate elongation was sensitive to arsenite addition, and stearate elongation to the presence of Triton X-100 or fluoride. The action of fluoride was not, apparently, due to chelation. 8. The microsomal preparations differed from soluble fractions from germinating pea in (a) synthesizing very-long-chain fatty acids, (b) not utilizing exogenous palmitate-acyl-carrier protein as a substrate for palmitate elongation and (c) having fatty acid synthesis stimulated by the addition of certain complex lipids.  相似文献   

12.
The sterol and fatty acid content of mycelium from germinating basidiospores of Cronartium fusiforme was determined. The mycelium contained stigmast-7-enol, fungisterol, and possibly stigmasta-5,7-dienol. No ergosterol was detected. The mycelium contained the expected fatty acids and low relative proportions of 9,10-epoxyoctadecanoic acid. The absence of ergosterol, and presence of the epoxy C18 acid and sterols typical of certain rust spores may be used for a relatively rapid confirmation of rust fungi in culture. Based on these chemical criteria, yeast-like cells isolated from the cultures of germinating basidiospores appear not to be C. fusiforme.  相似文献   

13.
The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.  相似文献   

14.
Arbuscular mycorrhizal (AM) fungi take up photosynthetically fixed carbon from plant roots and translocate it to their external mycelium. Previous experiments have shown that fungal lipid synthesized from carbohydrate in the root is one form of exported carbon. In this study, an analysis of the labeling in storage and structural carbohydrates after (13)C(1) glucose was provided to AM roots shows that this is not the only pathway for the flow of carbon from the intraradical to the extraradical mycelium (ERM). Labeling patterns in glycogen, chitin, and trehalose during the development of the symbiosis are consistent with a significant flux of exported glycogen. The identification, among expressed genes, of putative sequences for glycogen synthase, glycogen branching enzyme, chitin synthase, and for the first enzyme in chitin synthesis (glutamine fructose-6-phosphate aminotransferase) is reported. The results of quantifying glycogen synthase gene expression within mycorrhizal roots, germinating spores, and ERM are consistent with labeling observations using (13)C-labeled acetate and glycerol, both of which indicate that glycogen is synthesized by the fungus in germinating spores and during symbiosis. Implications of the labeling analyses and gene sequences for the regulation of carbohydrate metabolism are discussed, and a 4-fold role for glycogen in the AM symbiosis is proposed: sequestration of hexose taken from the host, long-term storage in spores, translocation from intraradical mycelium to ERM, and buffering of intracellular hexose levels throughout the life cycle.  相似文献   

15.
16.
Trichoderma harzianum is an effective biocontrol agent against several fungal soilborne plant pathogens. However, possible adverse effects of this fungus on arbuscular mycorrhizal fungi might be a drawback in its use in plant protection. The objective of the present work was to examine the interaction between Glomus intraradices and T. harzianum in soil. The use of a compartmented growth system with root-free soil compartments enabled us to study fungal interactions without the interfering effects of roots. Growth of the fungi was monitored by measuring hyphal length and population densities, while specific fatty acid signatures were used as indicators of living fungal biomass. Hyphal 33P transport and beta-glucuronidase (GUS) activity were used to monitor activity of G. intraradices and a GUS-transformed strain of T. harzianum, respectively. As growth and metabolism of T. harzianum are requirements for antagonism, the impact of wheat bran, added as an organic nutrient source for T. harzianum, was investigated. The presence of T. harzianum in root-free soil reduced root colonization by G. intraradices. The external hyphal length density of G. intraradices was reduced by the presence of T. harzianum in combination with wheat bran, but the living hyphal biomass, measured as the content of a membrane fatty acid, was not reduced. Hyphal 33P transport by G. intraradices also was not affected by T. harzianum. This suggests that T. harzianum exploited the dead mycelium but not the living biomass of G. intraradices. The presence of external mycelium of G. intraradices suppressed T. harzianum population development and GUS activity. Stimulation of the hyphal biomass of G. intraradices by organic amendment suggests that nutrient competition is a likely means of interaction. In conclusion, it seemed that growth of and phosphorus uptake by the external mycelium of G. intraradices were not affected by the antagonistic fungus T. harzianum; in contrast, T. harzianum was adversely affected by G. intraradices.  相似文献   

17.
The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1(omega)5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1(omega)5 in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1(omega)5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely with neutral lipid fatty acid 16:1(omega)5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1(omega)5. The fungal neutral lipid/phospholipid ratio in the extraradical mycelium was positively correlated with the level of root infection and thus decreased with increasing applications of P. The neutral lipid/phospholipid ratio indicated that at high P levels, less carbon was allocated to storage structures. At all levels of P applied, the major part of the AM fungus was found to be present outside the roots, as estimated from phospholipid fatty acid 16:1(omega)5. The ratio of extraradical biomass/intraradical biomass was not affected by the application of P, except for a decrease at the highest level of P applied.  相似文献   

18.
Nitrogen metabolism was examined in monoxenic cultures of carrot roots (Daucus carota L.) colonized with the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith. Glutamine synthetase and glutamate dehydrogenase activities were significantly increased in mycorrhizal roots for which only the extraradical mycelium had exclusive access to NH4NO3 in a distinct hyphal compartment inaccessible to the roots. This was in comparison with the water controls but was similar to the enzyme activities of non-arbuscular-mycorrhizal (non-AM) roots that had direct access to NH4NO3. In addition, glutamate dehydrogenase activity was significantly enhanced in AM roots compared with non-AM roots. Carrot roots took up 15NH4+ more efficiently than 15NO3-, and the extraradical hyphae transfered 15NH4+ to host roots from the hyphal compartment but did not transfer 15NO3-. The extraradical mycelium was shown, for the first time, to have a different glutamine synthetase monomer than roots. Our overall results highlight the active role of AM fungi in nitrogen uptake, transfer, and assimilation in their symbiotic root association.  相似文献   

19.
The composition of lipids and fatty acids was studied in the spores of exogenously dormant (spores 0) and germinating (spores G) spores in distilled water for sporangiospores of zygomycetous fungi Cunninghamella echinulata VKM F-663 and Umbelopsis ramanniana VKM F-582 and for conidia of ascomycetous fungi Aspergillus tamarii VKM F-64 and A. sydowii VKM F-441. Compared to spores 0, the lipids of spores G contained higher shares of unsaturated fatty acids, lower levels of massive phospholipids (phosphatidylcholine and phosphatidylethanolamine), and elevated levels of phosphatidylglycerol and phosphatidic acid. The level of cardiolipin, the main phospholipid of the mitochondrial membranes, increased when the spores of both zygomycetes exited from the dormant state. While a certain increase in the content of free and esterified sterols in the neutral lipids of the slowly germinating U. ramanniana G spores was observed, germination of sporangiospores and conidia of the studied fungi generally did not result in significant changes in the composition of the neutral lipid classes, which may be due to the fact that they are not the major reserve mobilized at the stage of exit from the dormant state.  相似文献   

20.
Organic phosphorus sources make up a large fraction of the total P in some soils. Vesicular–arbuscular mycorrhizal fungi provide a large surface area for the absorption of inorganic P. The question of whether or not they have direct access to organic P by producing extracellular phosphatases has hitherto been controversial because experiments had not been performed in the absence of other soil microorganisms. We used a split-dish in vitro carrot mycorrhiza system free from contaminating microorganisms. The extraradical hyphae of Glomus intraradices hydrolysed both 5-bromo-4-chloro-3-indolyl phosphate and phenolphthalein diphosphate. Moreover, they transferred significantly more P to roots when they had access to inositol hexaphosphoric acid (phytate) than when they did not. Thus we show unequivocally that extraradical hyphae of G. intraradices can hydrolyse organic P, and, further, that the resultant inorganic P can be taken up and transported to host roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号