首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transfer of anti-human cytomegalovirus (HCMV) effector T cells to allogeneic bone marrow recipients results in protection from HCMV disease associated with transplantation, suggesting the direct control of CMV replication by T cells. IE1 and pp65 proteins, both targets of CD4(+) and CD8(+) T cells, are considered the best candidates for immunotherapy and vaccine design against HCMV. In this report, we describe the purification of a 165-kDa chimeric protein, IE1-pp65, and its use for in vitro stimulation and expansion of anti-HCMV CD4(+) and CD8(+) T cells from peripheral blood mononuclear cells (PBMC) of HCMV-seropositive donors. We demonstrate that an important proportion of anti-HCMV CD4(+) T cells was directed against IE1-pp65 in HCMV-seropositive donors and that the protein induced activation of HLA-DR3-restricted anti-IE1 CD4(+) T-cell clones, as assessed by gamma interferon (IFN-gamma) secretion and cytotoxicity. Moreover, soluble IE1-pp65 stimulated and expanded anti-pp65 CD8(+) T cells from PBMC of HLA-A2, HLA-B35, and HLA-B7 HCMV-seropositive blood donors, as demonstrated by cytotoxicity, intracellular IFN-gamma labeling, and quantitation of peptide-specific CD8(+) cells using an HLA-A2-peptide tetramer and staining of intracellular IFN-gamma. These results suggest that soluble IE1-pp65 may provide an alternative to infectious viruses used in current adoptive strategies of immunotherapy.  相似文献   

2.
In order to expand tumor-infiltrating lymphocytes (TIL) efficiently and in order to use them for immunotherapy, we utilized lipopolysaccharide-activated B cells (LPS blasts) as costimulatory-signal-providing cells in an in vitro culture system. TIL, prepared from subcutaneously inoculated B16 melanoma, failed to expand when cultured with anti-CD3 monoclonal antibody (mAb) alone followed by a low dose of interleukin(IL)-2. In contrast, such TIL did expand efficiently in culture with both anti-CD3 mAb and LPS blasts followed by culture with IL-2. These findings suggest that the presence of LPS blasts in the initial culture was essential for the cell expansion. The expansion of TIL was partially blocked by the addition of CTLA4 Ig, which is an inhibitor of costimulatory molecules such as CD80 and CD86, and was almost blocked by the addition of anti-(Fc receptor γII)mAb. These findings thus indicate that such molecules, in conjunction with the receptor on the LPS blasts, participate in the efficient expansion of TIL. The B16-derived TIL, which expanded in our culture system, were predominantly CD8+T cells and showed a higher level of cytolytic activity against B16 melanoma than either lymphokine-activated killer cells or TIL cultured with a high dose of IL-2. In addition, the in vitro expanded B16-derived TIL produced interferon γ, but not IL-4, in response to B16 melanoma. What is more important, the adoptive transfer of such TIL had a significant antitumor effect against pulmonary metastasis in B16 melanoma, even without the concurrent administration of IL-2. Collectively, our results thus indicate the therapeutic efficacy of the protocol presented here for antitumor immunotherapy with TIL.  相似文献   

3.
Tumor growth is allowed by its ability to escape immune system surveillance. An important role in determining tumor evasion from immune control might be played by tumor-infiltrating regulatory lymphocytes. This study was aimed at characterizing phenotype and function of CD8+ CD28- T regulatory cells infiltrating human cancer. Lymphocytes infiltrating primitive tumor lesion and/or satellite lymph node from a series of 42 human cancers were phenotypically studied and functionally analyzed by suppressor assays. The unprecedented observation was made that CD8+ CD28- T regulatory lymphocytes are almost constantly present and functional in human tumors, being able to inhibit both T cell proliferation and cytotoxicity. CD4+ CD25+ T regulatory lymphocytes associate with CD8+ CD28- T regulatory cells so that the immunosuppressive activity of tumor-infiltrating regulatory T cell subsets, altogether considered, may become predominant. The infiltration of regulatory T cells seems tumor related, being present in metastatic but not in metastasis-free satellite lymph nodes; it likely depends on both in situ generation (via cytokine production) and recruitment from the periphery (via chemokine secretion). Collectively, these results have pathogenic relevance and implication for immunotherapy of cancer.  相似文献   

4.
Tumor-infiltrating lymphocytes from six patients with metastatic malignant melanoma were expanded by culture in recombinant interleukin 2. Three of the preparations were highly cytotoxic against autologous fresh melanoma tumor cells, but not against autologous fresh normal cells or allogeneic fresh tumor targets. The other three were highly cytotoxic against autologous fresh melanoma tumor cells and also had a limited capacity to kill allogeneic fresh tumor targets. The tumor-associated specific killer cells could be expanded from threefold to 95,652-fold with maintenance of specific antitumor lysis. The expanded tumor-infiltrating cells were Leu-4+ T cells, and in five of six patients the majority were Leu-3+. These studies demonstrate that the melanoma-bearing patient raises an immune response against autologous tumor and presents a method for the generation of human lymphocytes with antitumor reactivity that may be useful in the adoptive immunotherapy of tumors.  相似文献   

5.
In order to expand tumor-infiltrating lymphocytes (TIL) efficiently and in order to use them for immunotherapy, we utilized lipopolysaccharide-activated B cells (LPS blasts) as costimulatory-signal-providing cells in an in vitro culture system. TIL, prepared from subcutaneously inoculated B16 melanoma, failed to expand when cultured with anti-CD3 monoclonal antibody (mAb) alone followed by a low dose of interleukin(IL)-2. In contrast, such TIL did expand efficiently in culture with both anti-CD3 mAb and LPS blasts followed by culture with IL-2. These findings suggest that the presence of LPS blasts in the initial culture was essential for the cell expansion. The expansion of TIL was partially blocked by the addition of CTLA4 Ig, which is an inhibitor of costimulatory molecules such as CD80 and CD86, and was almost blocked by the addition of anti-(Fc receptor II)mAb. These findings thus indicate that such molecules, in conjunction with the receptor on the LPS blasts, participate in the efficient expansion of TIL. The B16-derived TIL, which expanded in our culture system, were predominantly CD8+T cells and showed a higher level of cytolytic activity against B16 melanoma than either lymphokine-activated killer cells or TIL cultured with a high dose of IL-2. In addition, the in vitro expanded B16-derived TIL produced interferon , but not IL-4, in response to B16 melanoma. What is more important, the adoptive transfer of such TIL had a significant antitumor effect against pulmonary metastasis in B16 melanoma, even without the concurrent administration of IL-2. Collectively, our results thus indicate the therapeutic efficacy of the protocol presented here for antitumor immunotherapy with TIL.This work was supported in part by a grant from the Ministry of Education, Science and Culture  相似文献   

6.
We have developed culture conditions for the efficient expansion of cytotoxic effector cells from peripheral blood mononuclear cells (PBMC) by the timed addition of cytokine-rich supernatants collected from allogeneic PBMC cultures stimulated with anti-CD3 monoclonal antibody (mAb) (allogeneic CD3 supernatants; ACD3S). These cytotoxic effectors belonged primarily to CD56(+) natural killer (NK) cells, and the cell subset with the greatest cytotoxic activity was an otherwise rare population of CD3(+)CD56(+) cells (NKT cells) that expand dramatically under these conditions. CD3(+)CD56(+) cytotoxic effectors were generated from the PBMC of 16 patients with several types of cancer. The CD3(+)CD56(+) cell subset expanded significantly and efficiently lysed NK- as well as lymphokine-activated killer (LAK)-sensitive targets. More importantly, ACD3S-activated CD3(+)CD56(+) cells were capable of efficiently lysing autologous tumor cells including metastatic colorectal, ovarian, breast, lung and pancreatic tumor cells as well as melanoma cells. ACD3S-expanded CD3(+)CD56(+) cells exhibited increased levels of cytoplasmic interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-alpha), gamma-interferon (IFN-gamma) and perforin. CD3(+)CD56(+) cell-mediated cytotoxicity was not restricted by major histocompatibility complex (MHC) gene products, since it was not blocked by anti-MHC class I mAb but was highly inhibited in the presence of CD2- and CD18-specific mAb. These data suggest that CD3(+)CD56(+) cells expanded under the presence of ACD3S may be utilized in clinical protocols for cancer immunotherapy.  相似文献   

7.
Recent advancements in T cell immunotherapy suggest that T cells engineered with high-affinity TCR can offer better tumor regression. However, whether a high-affinity TCR alone is sufficient to control tumor growth, or the T cell subset bearing the TCR is also important remains unclear. Using the human tyrosinase epitope-reactive, CD8-independent, high-affinity TCR isolated from MHC class I-restricted CD4(+) T cells obtained from tumor-infiltrating lymphocytes (TIL) of a metastatic melanoma patient, we developed a novel TCR transgenic mouse with a C57BL/6 background. This HLA-A2-restricted TCR was positively selected on both CD4(+) and CD8(+) single-positive cells. However, when the TCR transgenic mouse was developed with a HLA-A2 background, the transgenic TCR was primarily expressed by CD3(+)CD4(-)CD8(-) double-negative T cells. TIL 1383I TCR transgenic CD4(+), CD8(+), and CD4(-)CD8(-) T cells were functional and retained the ability to control tumor growth without the need for vaccination or cytokine support in vivo. Furthermore, the HLA-A2(+)/human tyrosinase TCR double-transgenic mice developed spontaneous hair depigmentation and had visual defects that progressed with age. Our data show that the expression of the high-affinity TIL 1383I TCR alone in CD3(+) T cells is sufficient to control the growth of murine and human melanoma, and the presence or absence of CD4 and CD8 coreceptors had little effect on its functional capacity.  相似文献   

8.
Regulatory T cells (T(reg)) that prevent autoimmune diseases by suppression of self-reactive T cells may also suppress the immune response against cancer. In mice, depletion of T(reg) by Ab therapy leads to more efficient tumor rejection. T(reg)-mediated suppression of antitumor immune responses may partly explain the poor clinical response to vaccine-based immunotherapy for human cancer. In this study, we measured the prevalence of T(reg) that coexpress CD4 and CD25 in the PBLs, tumor-infiltrating lymphocytes, and regional lymph node lymphocytes from 65 patients with either pancreas or breast cancer. In breast cancer patients (n = 35), pancreas cancer patients (n = 30), and normal donors (n = 35), the prevalence of T(reg) were 16.6% (SE 1.22), 13.2% (SE 1.13), and 8.6% (SE 0.71) of the total CD4(+) cells, respectively. The prevalence of T(reg) were significantly higher in breast cancer patients (p < 0.01) and pancreas cancer patients (p < 0.01) when compared with normal donors. In tumor-infiltrating lymphocytes and lymph node lymphocytes, the T(reg) prevalence were 20.2% (SE 3.93) and 20.1% (SE 4.3), respectively. T(reg) constitutively coexpressed CTLA-4 and CD45RO markers, and secreted TGF-beta and IL-10 but did not secrete IFN-gamma. When cocultured with activated CD8(+) cells or CD4(+)25(-) cells, T(reg) potently suppressed their proliferation and secretion of IFN-gamma. We conclude that the prevalence of T(reg) is increased in the peripheral blood as well as in the tumor microenvironment of patients with invasive breast or pancreas cancers. These T(reg) may mitigate the immune response against cancer, and may partly explain the poor immune response against tumor Ags.  相似文献   

9.
Pancreatic carcinoma is a very aggressive disease with dismal prognosis. Although evidences for tumor-specific T cell immunity exist, factors related to tumor microenvironment and the presence of immunosuppressive cytokines in patients' sera have been related to its aggressive behavior. Carcinoembryonic Ag (CEA) is overexpressed in 80-90% of pancreatic carcinomas and contains epitopes recognized by CD4(+) T cells. The aim of this study was to evaluate the extent of cancer-immune surveillance and immune suppression in pancreatic carcinoma patients by comparing the anti-CEA and antiviral CD4(+) T cell immunity. CD4(+) T cells from 23 normal donors and 44 patients undergoing surgical resection were tested for recognition of peptides corresponding to CEA and viral naturally processed promiscuous epitopes by proliferation and cytokine release assays. Anti-CEA CD4(+) T cell immunity was present in a significantly higher number of normal donors than pancreatic cancer patients. Importantly, whereas CD4(+) T cells from normal donors produced mainly GM-CSF and IFN-gamma, CD4(+) T cells from the patients produced mainly IL-5, demonstrating a skew toward a Th2 type. On the contrary, the extent of antiviral CD4(+) T cell immunity was comparable between the two groups and showed a Th1 type. The immunohistochemical analysis of tumor-infiltrating lymphocytes showed a significantly higher number of GATA-3(+) compared with T-bet(+) lymphoid cells, supporting a Th2 skew also at the tumor site. Collectively, these results demonstrate that Th2-immune deviation in pancreatic cancer is not generalized but tumor related and suggests that the skew might be possibly due to factor(s) present at the tumor site.  相似文献   

10.
Cytotoxic T lymphocytes (CTL) specific for autologous human melanoma have been successfully generated in vitro from tumor bearing lymph nodes without any stimulation by the autologous tumor. Tumor-involved lymph node cells (LNC) were cultured in serum free medium (AIM-V) containing 1,000 U/ml of recombinant interleukin-2. The best expansion and specific cytotoxicity of CTL were achieved in 4 to 6 weeks of culture. The predominant populations in cultured LNC-derived CTL were CD2+, CD3+, CD4-, CD8+, CD56-, and HLA-DR+ T cells. These data suggested that tumor-involved LNC may provide an alternative source for the generation of tumor-specific CTL in adoptive immunotherapy.  相似文献   

11.
The alpha- and beta-chains of the TCR from a highly avid anti-gp100 CTL clone were isolated and used to construct retroviral vectors that can mediate high efficiency gene transfer into primary human lymphocytes. Expression of this TCR gene was confirmed by Western blot analysis, immunocytometric analysis, and HLA Ag tetramer staining. Gene transfer efficiencies of >50% into primary lymphocytes were obtained without selection for transduced cells using a method of prebinding retroviral vectors to cell culture vessels before the addition of lymphocytes. The biological activity of transduced cells was confirmed by cytokine production following coculture with stimulator cells pulsed with gp100 peptides, but not with unrelated peptides. The ability of this anti-gp100 TCR gene to transfer high avidity Ag recognition to engineered lymphocytes was confirmed in comparison with highly avid antimelanoma lymphocytes by the high levels of cytokine production (>200,000 pg/ml IFN-gamma), by recognition of low levels of peptide (<200 pM), and by HLA class I-restricted recognition and lysis of melanoma tumor cell lines. CD4(+) T cells engineered with this anti-gp100 TCR gene were Ag reactive, suggesting CD8-independent activity of the expressed TCR. Finally, nonmelanoma-reactive tumor-infiltrating lymphocyte cultures developed antimelanoma activity following anti-gp100 TCR gene transfer. In addition, tumor-infiltrating lymphocytes with reactivity against non-gp100 melanoma Ags acquired gp100 reactivity and did not lose the recognition of autologous melanoma Ags following gp100 TCR gene transfer. These results suggest that lymphocytes genetically engineered to express anti-gp100 TCR may be of value in the adoptive immunotherapy of patients with melanoma.  相似文献   

12.
To study the CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) in the antitumor response, we propagated these subsets directly from tumor tissues with anti-CD3:anti-CD8 (CD3,8) and anti-CD3:anti-CD4 (CD3,4) bispecific mAb (BSMAB). CD3,8 BSMAB cause selective cytolysis of CD8+ lymphocytes by bridging the CD8 molecules of target lymphocytes to the CD3 molecular complex of cytolytic T lymphocytes with concurrent activation and proliferation of residual CD3+CD4+ T lymphocytes. Similarly, CD3,4 BSMAB cause selective lysis of CD4+ lymphocytes whereas concurrently activating the residual CD3+CD8+ T cells. Small tumor fragments from four malignant melanoma and three renal cell carcinoma patients were cultured in medium containing CD3,8 + IL-2, CD3,4 + IL-2, or IL-2 alone. CD3,8 led to selective propagation of the CD4+ TIL whereas CD3,4 led to selective propagation of the CD8+ TIL from each of the tumors. The phenotypes of the TIL subset cultures were generally stable when assayed over a 1 to 3 months period and after further expansion with anti-CD3 mAb or lectins. Specific 51Cr release of labeled target cells that were bridged to the CD3 molecular complexes of TIL suggested that both CD4+ and CD8+ TIL cultures have the capacity of mediating cytolysis via their Ti/CD3 TCR complexes. In addition, both CD4+ and CD8+ TIL cultures from most patients caused substantial (greater than 20%) lysis of the NK-sensitive K562 cell line. The majority of CD4+ but not CD8+ TIL cultures also produced substantial lysis of the NK-resistant Daudi cell line. Lysis of the autologous tumor by the TIL subsets was assessed in two patients with malignant melanoma. The CD8+ TIL from one tumor demonstrated cytotoxic activity against the autologous tumor but negligible lysis of allogeneic melanoma targets. In conclusion, immunocompetent CD4+ and CD8+ TIL subsets can be isolated and expanded directly from small tumor fragments of malignant melanoma and renal cell carcinoma using BSMAB. The resultant TIL subsets can be further expanded for detailed studies or for adoptive immunotherapy.  相似文献   

13.
A Knight  S Mackinnon  MW Lowdell 《Cytotherapy》2012,14(9):1110-1118
Abstract Background aims. Human gamma-delta (γδ) T cells are potent effector lymphocytes of innate immunity involved in anti-tumor immune surveillance. However, the Vδ1 γδ T-cell subset targeting multiple myeloma (MM) has not previously been investigated. Methods. Vδ1 T cells were purified from peripheral blood mononuclear cells of healthy donors and patients with MM by immunomagnetic sorting and expanded with phytohemagglutinin (PHA) together with interleukin (IL)-2 in the presence of allogeneic feeders. Vδ1 T cells were phenotyped by flow cytometry and used in a 4-h flow cytometric cytotoxicity assay. Cytokine release and blocking studies were performed. Primary myeloma cells were purified from MM patients' bone marrow aspirates. Results. Vδ1 T cells expanded from healthy donors displayed prominent cytotoxicity by specific lysis against patients' CD38 (+) CD138 (+) bone marrow-derived plasma cells. Vδ1 T cells isolated from MM patients showed equally significant killing of myeloma cells as Vδ1 T cells from normal donors. Vδ1 T cells showed similarly potent cytotoxicity against myeloma cell lines U266 and RPMI8226 and plasma cell leukemia ARH77 in a dose-dependent manner. The interferon (IFN)-γ secretion and Vδ1 T-cell cytotoxicity against myeloma cells was mediated in part through the T-cell receptor (TCR) in addition to involvement of Natural killer-G2D molecule (NKG2D), DNAX accessory molecule-1 (DNAM-1), intracellular cell adhesion molecule (ICAM)-1, CD3 and CD2 receptors. In addition, Vδ1 T cells were shown to exert anti-myeloma activity equal to that of Vδ2 T cells. Conclusions. We have shown for the first time that Vδ1 T cells are highly myeloma-reactive and have therefore established Vδ1 γδ T cells as a potential candidate for a novel tumor immunotherapy.  相似文献   

14.
Accumulating evidence suggests that cancer cells possess a small subpopulation that survives during potentially lethal stresses, including chemotherapy, radiation treatment, and molecular-targeting therapy. CD133 is a putative marker that distinguishes a minor subpopulation from normal differentiated tumor cells in many cancers. Although it is necessary to eradicate all cancer cells to obtain a cure, effective treatment to eliminate the CD133(+) treatment-tolerant cells has not been elucidated. In this study, we demonstrated that a CD133(+) subpopulation in murine melanoma is immunogenic and that effector T cells specific for the CD133(+) melanoma cells mediated potent antitumor reactivity, curing the mice of the parental melanoma. CD133(+) melanoma antigens preferentially induced type 17 T helper (Th17) cells and Th1 cells but not Th2 cells. CD133(+) melanoma cell-specific CD4(+) T-cell treatment eradicated not only CD133(+) tumor cells but also CD133(-) tumor cells while inducing long-lasting accumulation of lymphocytes and dendritic cells with upregulated MHC class II in tumor tissues. Further, the treatment prevented regulatory T-cell induction. These results indicate that T-cell immunotherapy is a promising treatment option to eradicate CD133(+) drug-tolerant cells to obtain a cure for cancer.  相似文献   

15.
 We have developed a novel approach to cancer immunotherapy – an autologous whole-cell vaccine modified with the hapten dinitrophenyl (DNP). This approach elicits significant inflammatory responses in metastatic sites and some objective tumor responses. Post-surgical adjuvant immunotherapy with DNP-modified melanoma vaccine in a setting of micrometastatic disease produces significant survival prolongation in stage III melanoma patients. Histologically, the inflammatory responses of the tumor consist of infiltration by lymphocytes, the majority of which are CD8+, HLA-DR+ T cells. T cells from these lesions tend to have mRNA for interferon γ. T cell receptor analysis suggests that the tumor-infiltrating T cells are clonally expanded. DNP-modified vaccine also induces T cells in the peripheral blood, which respond to DNP-modified autologous cells in a hapten-specific, MHC-restricted manner. Moreover, a T cell line generated from these lymphocytes responded to only a single HPLC fraction of MHC-associated, DNP-modified tumor peptides. Since inflammatory responses in metastases were not consistently associated with dramatic tumor regression, we considered the possibility of immunosuppression at the tumor site. We found that mRNA for the anti-inflammatory cytokine, interleukin-10 (IL-10) is expressed in most metastatic melanoma tissues and subsequently demonstrated that IL-10 protein is produced by melanoma cells. Thus the efficacy of DNP vaccine could be further enhanced by inhibition of IL-10 production or binding. Finally, we expect these results obtained with melanoma to be applicable to other human cancers. Received: 6 August 1996 / Accepted: 20 September 1996  相似文献   

16.
The execution of appropriate gene expression patterns during immune responses is of eminent importance where CpG methylation has emerged as an essential mechanism for gene silencing. We have charted the methylation status of regulatory elements in the human IFNG gene encoding the signature cytokine of the Th1 response. Surprisingly, human naive CD4(+) T lymphocytes displayed hypermethylation at the IFNG promoter region, which is in sharp contrast to the completely demethylated status of this region in mice. Th1 differentiation induced demethylation of the IFNG promoter and the upstream conserved nucleotide sequence 1 enhancer region, whereas Th2-differentiated lymphocytes remained hypermethylated. Furthermore, CD19(+) B lymphocytes displayed hypomethylation at the IFNG promoter region with a similar pattern to Th1 effector cells. When investigating the methylation status among tumor-infiltrating CD4(+) T lymphocytes from patients with colon cancer, we found that tumor-infiltrating lymphocytes cells are inappropriately hypermethylated, and thus not confined to the Th1 lineage. In contrast, CD4(+) T cells from the tumor draining lymph node were significantly more demethylated than tumor-infiltrating lymphocytes. We conclude that there are obvious interspecies differences in the methylation status of the IFNG gene in naive CD4(+) T lymphocytes, where Th1 commitment in human lymphocytes involves demethylation before IFNG expression. Finally, investigations of tumor-infiltrating lymphocytes and CD4(+) cells from tumor draining lymph node demonstrate methylation of regulatory regions within key effector genes as an epigenetic mechanism of tumor-induced immunosuppression.  相似文献   

17.
A clinical trial of adoptive immunotherapy was carried out with peripheral blood lymphocytes (PBL), cocultured in vitro with autologous tumor cells and interieukin-2 (IL-2), in 14 patients with advanced melanoma. PBL from these patients were cocultured with irradiated autologous tumor cells for 7 days, which was followed by expansion in IL-2-containing medium. These lymphocytes were returned to the patient along with intravenous IL-2 at doses up to 2×106 IU m–2 day–1. A dose of 300 mg/m2 cyclophosphamide was administered to each patient intravenously 4 days prior to each treatment. Following coculture, the lymphocytes were primarily CD3+ T cells and they expressed varied degrees of cytotoxicity against autologous melanoma cells. In 9 patients the activated cells were al least 80% CD4+ and in 2 cases they were mostly CD8+. Some of the activated cells exhibited suppressor or helper activity in a functional regulatory coculture assay. No major therapeutic response was observed in this study. Minor responses were observed in 2 patients. Toxicities were those expected from the IL-2 dose administered.This work has been supported by an American Cancer Society Institutional Research Grant (ACS-IRG 91-230), by the University of Connecticut Clinical Research Center (grant 0021), and by the Hartford Hospital Research Fund (grant 1017-20-018). Dr. Sporn is a recipient of American Cancer Society Clinical Oncology Career Development Award 90-230  相似文献   

18.
Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.  相似文献   

19.
Summary Lymphocytes and monocytes from the peripheral blood of 30 patients with malignant melanoma were tested for natural cytotoxicity against K562 cells in a 3-h 51Cr-release assay, and the effects of OK432 (a streptococcal preparation) on the cytotoxicity were examined. The lymphocyte cytotoxicity of melanoma patients was similar to that of normal donors and control patients with benign skin disease. Furthermore, the lymphocyte cytotoxicity of melanoma patients was not correlated to the stage of the disease. Similarly, lysis of K562 cells by monocytes isolated by adherence to autologous serum-coated plastic dishes in melanoma patients was comparable to that of controls and not associated with the stage of the disease. Positive monocyte reactions were recorded in 10 of 30 (33%) melanoma patients, seven of 21 (33%) normal donors and three of 10 (30%) control patients. There was no correlation between lymphocyte cytotoxicity and monocyte cytotoxicity. Overnight treatment of monocytes and lymphocytes with OK432 resulted in an increase in cytotoxicity. Significant augmentation of cytotoxicity by OK432 was observed in 28% of the monocyte samples and 86% of the lymphocyte samples, while partially purified human interferon augmented cytotoxicity in 63% of the monocyte samples and all the lymphocyte samples. These results suggest that neither lymphocyte nor monocyte cytotoxicities are depressed in melanoma patients as compared with normal donors and patients with benign disease and that OK432 has a stronger stimulatory effect on lymphocytes than on monocytes.  相似文献   

20.
BACKGROUND: The adoptive transfer of ex vivo-induced tumor-specific T-cell lines provides a promising approach for cancer immunotherapy. We have demonstrated previously the feasibility of inducing in vitro long-term anti-tumor cytotoxic T-cell (CTL) lines directed against different types of solid tumors derived from both autologous and allogeneic PBMC. We have now investigated the possibility of producing large amounts of autologous anti-tumor CTL, in compliance with good manufacturing practices, for in vivo use. METHODS: Four patients with advanced solid tumors (two sarcoma, one renal cell cancer and one ovarian cancer), who had received several lines of anticancer therapy, were enrolled. For anti-tumor CTL induction, patient-derived CD8-enriched PBMC were stimulated with DC pulsed with apoptotic autologous tumor cells (TC) as the source of tumor Ag. CTL were then restimulated in the presence of TC and expanded in an Ag-independent way. RESULTS: Large amounts of anti-tumor CTL (range 14-20 x 10(9)), which displayed high levels of cytotoxic activity against autologous TC, were obtained in all patients by means of two-three rounds of tumor-specific stimulation and two rounds of Ag-independent expansion, even when a very low number of viable TC was available. More than 90% of effector cells were CD3(+) CD8(+) T cells, while CD4(+) T lymphocytes and/or NK cells were less than 10%. DISCUSSION: Our results demonstrate the feasibility of obtaining large quantities of anti-tumor specific CTL suitable for adoptive immunotherapy approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号