首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SET domain-containing proteins of the SU(VAR)3-9 class are major regulators of heterochromatin in several eukaryotes, including mammals, insects, plants and fungi. The function of these polypeptides is mediated, at least in part, by their ability to methylate histone H3 on lysine 9 (H3K9). Indeed, mutants defective in SU(VAR)3-9 proteins have implicated di- and/or trimethyl H3K9 in the formation and/or maintenance of heterochromatin across the eukaryotic spectrum. Yet, the biological significance of monomethyl H3K9 has remained unclear because of the lack of mutants exclusively defective in this modification. Interestingly, a SU(VAR)3-9 homolog in the unicellular green alga Chlamydomonas reinhardtii, SET3p, functions in vitro as a specific H3K9 monomethyltransferase. RNAi-mediated suppression of SET3 reactivated the expression of repetitive transgenic arrays and reduced global monomethyl H3K9 levels. Moreover, chromatin immunoprecipitation (ChIP) assays demonstrated that transgene reactivation correlated with the partial loss of monomethyl H3K9 from their chromatin. In contrast, the levels of trimethyl H3K9 or the repression of euchromatic sequences were not affected by SET3 downregulation; whereas dimethyl H3K9 was undetectable in Chlamydomonas. Thus, our observations are consistent with a role for monomethyl H3K9 as an epigenetic mark of repressed chromatin and raise questions as to the functional distinctiveness of different H3K9 methylation states.  相似文献   

2.
Zhang X  Bruice TC 《Biochemistry》2007,46(51):14838-14844
Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations have been carried out in an investigation of histone lysine methyltransferase (SET7/9). Proton dissociation (SET7/9.Lys4-NH3+.AdoMet --> SET7/9.Lys4-NH2.AdoMet + H+) must be prior to the methylation by S-adenosylmethionine (AdoMet). We find that a water channel is formed to allow escape of the proton to solvent. The water channel appears in the presence of AdoMet, but is not present in the species SET7/9.Lys4-NH3+ or SET7/9.Lys4-N(Me)H2+.AdoHcy. A water channel is not formed in the ground state of SET7/9.Lys4-N(Me)H2+.AdoMet, and the second methyl transfer does not occur. The structure of SET7/9.Lys4-N(Me)H2+.AdoMet includes a greater distance (6.1 +/- 0.3 A) between Cgamma(AdoMet) and N(MeLys4) than is present in SET7/9.Lys4-NH3+.AdoMet (5.7 +/- 0.2 A). The electrostatic interactions between the positive charges on AdoMet and SET7/9.Lys4-NH3+ decrease the pKa of the latter from 10.9 +/- 0.4 to 8.2 +/- 0.6, and this is not seen in the SET7/9.Lys4-N(Me)H2+.AdoMet species. The formation, or not, of a water channel, the distance between Sdelta(AdoMet) and N(Lys4), and the angle Sdelta(AdoMet)-Cgamma(AdoMet)-N(Lys4) determine whether methyl transfer can occur. By QM/MM, the calculated free energy barrier of the methyl transfer reaction in the SET7/9 [Lys4-NH2 + AdoMet --> Lys4-N(Me)H2+ + AdoHcy] complex is DeltaG++ = 19.0 +/- 1.6 kcal/mol. This DeltaG++ is in agreement with the value of 20.9 kcal/mol calculated from the experimental rate constant (0.24 min(-1)).  相似文献   

3.
Methylation of histone H3 lysine 9 (H3K9) is a key feature of silent chromatin and plays an important role in stabilizing the interaction of heterochromatin protein 1 (HP1) with chromatin. Genomes of metazoans such as the fruit fly Drosophila melanogaster generally encode three types of H3K9-specific SET domain methyltransferases that contribute to chromatin homeostasis during the life cycle of the organism. SU(VAR)3-9, dG9a, and dSETDB1 all function in the generation of wild-type H3K9 methylation levels in the Drosophila genome. Two of these enzymes, dSETDB1 and SU(VAR)3-9, govern heterochromatin formation in distinct but overlapping patterns across the genome. H3K9 methylation in the small, heterochromatic fourth chromosome of D. melanogaster is governed mainly by dSETDB1, whereas dSETDB1 and SU(VAR)3-9 function in concert to methylate H3K9 in the pericentric heterochromatin of all chromosomes, with dG9a having little impact in these domains, as shown by monitoring position effect variegation. To understand how these distinct heterochromatin compartments may be differentiated, we examined the developmental timing of dSETDB1 function using a knockdown strategy. dSETDB1 acts to maintain heterochromatin during metamorphosis, at a later stage in development than the reported action of SU(VAR)3-9. Surprisingly, depletion of both of these enzymes has less deleterious effect than depletion of one. These results imply that dSETDB1 acts as a heterochromatin maintenance factor that may be required for the persistence of earlier developmental events normally governed by SU(VAR)3-9. In addition, the genetic interactions between dSETDB1 and Su(var)3-9 mutations emphasize the importance of maintaining the activities of these histone methyltransferases in balance for normal genome function.  相似文献   

4.
5.
Proteins containing the evolutionarily conserved SET domain are involved in regulation of eukaryotic gene expression and chromatin structure through their histone lysine methyltransferase (HMTase) activity. The Drosophila SU(VAR)3-9 protein and related proteins of other organisms have been associated with gene repression and heterochromatinization. In Arabidopsis there are 10 SUVH and 5 SUVR genes encoding proteins similar to SU(VAR)3-9, and 4 SUVH proteins have been shown to control heterochromatic silencing by its HMTase activity and by directing DNA methylation. The SUVR proteins differ from the SUVH proteins in their domain structure, and we show that the closely related SUVR1, SUVR2 and SUVR4 proteins contain a novel domain at their N-terminus, and a SUVR specific region preceding the SET domain. Green fluorescent protein (GFP)-fusions of these SUVR proteins preferably localize to the nucleolus, suggesting involvement in regulation of rRNA expression, in contrast to other SET-domain proteins studied so far. A novel HMTase specificity was demonstrated for SUVR4, in that monomethylated histone H3K9 is its preferred substrate in vitro.  相似文献   

6.
Su(var)3-9 is a dominant modifier of heterochromatin-induced gene silencing. Like its mammalian and Schizosaccharomyces pombe homologues, Su(var) 3-9 encodes a histone methyltransferase (HMTase), which selectively methylates histone H3 at lysine 9 (H3-K9). In Su(var)3-9 null mutants, H3-K9 methylation at chromocentre heterochromatin is strongly reduced, indicating that SU(VAR)3-9 is the major heterochromatin-specific HMTase in Drosophila. SU (VAR)3-9 interacts with the heterochromatin-associated HP1 protein and with another silencing factor, SU(VAR)3-7. Notably, SU(VAR)3-9-HP1 interaction is interdependent and governs distinct localization patterns of both proteins. In Su(var)3-9 null mutants, concentration of HP1 at the chromocentre is nearly lost without affecting HP1 accumulation at the fourth chromosome. By contrast, in HP1 null mutants SU(VAR)3-9 is no longer restricted at heterochromatin but broadly dispersed across the chromosomes. Despite this interdependence, Su(var)3-9 dominates the PEV modifier effects of HP1 and Su(var)3-7 and is also epistatic to the Y chromosome effect on PEV. Finally, the human SUV39H1 gene is able to partially rescue Su(var)3-9 silencing defects. Together, these data indicate a central role for the SU(VAR)3-9 HMTase in heterochromatin-induced gene silencing in Drosophila.  相似文献   

7.
8.
The chromo and SET domains are conserved sequence motifs present in chromosomal proteins that function in epigenetic control of gene expression, presumably by modulating higher order chromatin. Based on sequence information from the SET domain, we have isolated human (SUV39H1) and mouse (Suv39h1) homologues of the dominant Drosophila modifier of position-effect-variegation (PEV) Su(var)3-9. Mammalian homologues contain, in addition to the SET domain, the characteristic chromo domain, a combination that is also preserved in the Schizosaccharyomyces pombe silencing factor clr4. Chromatin-dependent gene regulation is demonstrated by the potential of human SUV39H1 to increase repression of the pericentromeric white marker gene in transgenic flies. Immunodetection of endogenous Suv39h1/SUV39H1 proteins in a variety of mammalian cell lines reveals enriched distribution at heterochromatic foci during interphase and centromere-specific localization during metaphase. In addition, Suv39h1/SUV39H1 proteins associate with M31, currently the only other characterized mammalian SU(VAR) homologue. These data indicate the existence of a mammalian SU(VAR) complex and define Suv39h1/SUV39H1 as novel components of mammalian higher order chromatin.  相似文献   

9.
Epigenetic indexing of chromatin domains by histone lysine methylation requires the balanced coordination of methyltransferase and demethylase activities. Here, we show that SU(VAR)3-3, the Drosophila homolog of the human LSD1 amine oxidase, demethylates H3K4me2 and H3K4me1 and facilitates subsequent H3K9 methylation by SU(VAR)3-9. Su(var)3-3 mutations suppress heterochromatic gene silencing, display elevated levels of H3K4me2, and prevent extension of H3K9me2 at pericentric heterochromatin. SU(VAR)3-3 colocalizes with H3K4me2 in interband regions and is abundant during embryogenesis and in syncytial blastoderm, where it appears concentrated at prospective heterochromatin during cycle 14. In embryos of Su(var)3-3/+ females, H3K4me2 accumulates in primordial germ cells, and the deregulated expansion of H3K4me2 antagonizes heterochromatic H3K9me2 in blastoderm cells. Our data indicate an early developmental function for the SU(VAR)3-3 demethylase in controlling euchromatic and heterochromatic domains and reveal a hierarchy in which SU(VAR)3-3-mediated removal of activating histone marks is a prerequisite for subsequent heterochromatin formation by H3K9 methylation.  相似文献   

10.
11.
Zhang X  Bruice TC 《Biochemistry》2008,47(25):6671-6677
Molecular dynamics simulations employing a molecular mechanics (MM) force field and hybrid quantum mechanics (QM) and MM (QM/MM) have been carried out to investigate the product specificity and mechanism of the histone H4 lysine 20 (H4-K20) methylation by human histone lysine methyltransferase SET8. At neutral pH, the target lysine is available to only the enzyme in the protonated state. The first step in the methylation reaction must be deprotonation of the lysine target which is followed by the (+)AdoMet methylation of the neutral lysine [Enz.Lys-CH(2)-NH(3)(+).(+)AdoMet --> H(+) + Enz.Lys-CH(2)-NH(2).(+)AdoMet -->--> Enz.Lys-CH(2)-N(Me)H(2)(+).AdoHcy]. The electrostatic interactions between two positive charges on (+)AdoMet and Lys20-NH(3)(+) decrease the pK(a) of Lys20-NH(3)(+). Upon formation of Enz.Lys-NH(3)(+).(+)AdoMet, a water channel by which the proton escapes to the outer solvent phase is formed. The formation of a water channel for the escape of a proton from Lys20-N(Me)H(2)(+) in Enz.Lys20-N(Me)H(2)(+).(+)AdoMet is not formed because the methyl substituent blocks the starting of the water channel. Thus, a second methylation does not take place. The dependence of the occurrence of methyl transfer on the formation of a water channel in SET8 is in accord with our previous reports on product specificity by histone lysine monomethyltransferase SET7/9, large subunit lysine dimethyltransferase (LSMT), and viral histone lysine trimethyltransferase (vSET). The average value of the experimental DeltaG(E)() for the six lysine methyl transfer reactions catalyzed by vSET, LSMT, and SET7/9 with p53 as a substrate is 22.1 +/- 1.0 kcal/mol, and the computed average (DeltaG(C)()) is 22.2 +/- 0.8 kcal/mol. In this study, the computed free energy barrier of the methyl transfer reaction [Lys20-NH(2) + (+)AdoMet --> Lys20-N(Me)H(2)(+) + AdoHcy] catalyzed by SET8 is 20.8 kcal/mol. This is in agreement with the value of 20.6 kcal/mol calculated from the experimental rate constant (0.43 +/- 0.02 min(-1)). Our bond-order computations establish that the H4-K20 monomethylation in SET8 is a concerted linear S(N)2 displacement reaction.  相似文献   

12.
SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing   总被引:1,自引:0,他引:1  
Schotta G  Ebert A  Reuter G 《Genetica》2003,117(2-3):149-158
This review summarizes genetic, molecular and biochemical studies of the SU(VAR)3-9 protein and the evidence for its key role in heterochromatin formation and heterochromatic gene silencing. The Su(var)3-9 locus was first identified as a dominant modifier of position-effect variegation (PEV) in Drosophila melanogaster. Together with Su(var)2-5 and Su(var)3-7, Su(var)3-9 belongs to the group of haplo-suppressor loci which show a triplo-dependent enhancer effect. All three genes encode heterochromatin-associated proteins. Su(var)3-9 is epistatic to the PEV modifier effects of Su(var)2-5 and Su(var)3-7, and it also dominates the effect of the Y chromosome on PEV. These genetic data support a central role of the SU(VAR)3-9 protein in heterochromatic gene silencing, one that is correlated with its activity as a histone H3-K9 methyltransferase (HMTase). In fact, SU(VAR)3-9 is the main chromocenter-specific HMTase of Drosophila. SU(VAR)3-9 and HP1, the product of Su(var)2-5, are main constituents of heterochromatin protein complexes and the interaction between these two proteins is interdependent. Functional analysis in fission yeast, Drosophila and mammals demonstrate that SU(VAR)3-9-dependent gene silencing processes are conserved in these organisms. This is also demonstrated by the rescue of Drosophila Su(var)3-9 mutant phenotypes with human SUV39H1 transgenes.  相似文献   

13.
SET-domain proteins of the Su(var)3-9, E(z) and trithorax families   总被引:13,自引:0,他引:13  
Alvarez-Venegas R  Avramova Z 《Gene》2002,285(1-2):25-37
SET-domain (SET: Su(var)3-9, E(z) and Trithorax)-containing proteins were collected through sequence searches of the available databases. After removing redundancies, the proteins belonging to three families, SU(VAR)3-9, E(Z) and Trithorax, were selected. Analysis of the relationship between the different members is based on pairwise alignment, compilation, and comparison of their SET-domains. The level of homology of the SET-domains defined the distribution of the proteins into families and into clades within the families. The architecture of the entire protein supported the distribution pattern built upon SET-domain similarity. Parallel cladistic and protein-architecture analyses outlined two plausible criteria for predicting function.  相似文献   

14.
The histone methyltransferase SU(VAR)3–9 plays an important role in the formation of heterochromatin within the eukaryotic nucleus. Several studies have shown that the formation of condensed chromatin is highly regulated during development, suggesting that SU(VAR)3–9''s activity is regulated as well. However, no mechanism by which this may be achieved has been reported so far. As we and others had shown previously that the N-terminus of SU(VAR)3–9 plays an important role for its activity, we purified interaction partners from Drosophila embryo nuclear extract using as bait a GST fusion protein containing the SU(VAR)3–9 N-terminus. Among several other proteins known to bind Su(VAR)3–9 we isolated the chromosomal kinase JIL-1 as a strong interactor. We show that SU(VAR)3–9 is a substrate for JIL-1 in vitro as well as in vivo and map the site of phosphorylation. These findings may provide a molecular explanation for the observed genetic interaction between SU(VAR)3–9 and JIL-1.  相似文献   

15.
16.
The methylation of lysine residues of histones plays a pivotal role in the regulation of chromatin structure and gene expression. Here, we report two crystal structures of SET7/9, a histone methyltransferase (HMTase) that transfers methyl groups to Lys4 of histone H3, in complex with S-adenosyl-L-methionine (AdoMet) determined at 1.7 and 2.3 A resolution. The structures reveal an active site consisting of: (i) a binding pocket between the SET domain and a c-SET helix where an AdoMet molecule in an unusual conformation binds; (ii) a narrow substrate-specific channel that only unmethylated lysine residues can access; and (iii) a catalytic tyrosine residue. The methyl group of AdoMet is directed to the narrow channel where a substrate lysine enters from the opposite side. We demonstrate that SET7/9 can transfer two but not three methyl groups to unmodified Lys4 of H3 without substrate dissociation. The unusual features of the SET domain-containing HMTase discriminate between the un- and methylated lysine substrate, and the methylation sites for the histone H3 tail.  相似文献   

17.
In most eukaryotes, the histone methyltransferase SU(VAR)3-9 and its orthologues play a major role in the function of centromeric heterochromatin. Although the methyltransferase domain is required for the formation of a fully functional centromere, mutations within other regions of the gene such as the N-terminus also have a strong impact on its in vivo function. To analyze the contribution of the N-terminus on the methyltransferase activity, we have expressed the full-length Drosophila SU(VAR)3-9 (dSU(VAR)3-9) together with various N-terminal deletions in Escherichia coli and analyzed the structural and enzymatic properties of the purified recombinant enzymes. Full-length dSU(VAR)3-9 specifically methylates lysine 9 within histone H3 on peptides, on intact histones, and, to a lesser extent, on nucleosomes. A detailed analysis of the reaction products shows that dSU(VAR)3-9 adds two methyl groups to an unmethylated H3 tail peptide in a nonprocessive manner. The full-length enzyme elutes with an apparent molecular weight of 160 kDa from a gel filtration column, which indicates the formation of a dimer. This property is dependent on an intact N-terminus. In contrast to the full-length enzymes, proteins lacking the N-terminus fail to dimerize, and show a 10-fold lower specific activity and a linear dependence of methyltransferase activity on enzyme concentration. A N-terminal peptide containing amino acids 1-152 of dSU(VAR)3-9 is sufficient to mediate this interaction in vitro. The dimerization of dSU(VAR)3-9 and the subsequent increase of its methyltransferase activity provide a starting point to understand the molecular details of the formation of heterochromatic structures in vivo.  相似文献   

18.
19.
In Drosophila, SU(VAR)3-7 is an essential heterochromatin component. It is required for proper chromatin condensation, and changing its dose modifies position-effect variegation. Sumoylation is a post-translational modification shown to play a role in diverse biological processes. Here, we demonstrate that sumoylation is essential for proper heterochromatin function in Drosophila through modification of SU(VAR)3-7. Indeed, SU(VAR)3-7 is sumoylated at lysine K839; this modification is required for localization of SU(VAR)3-7 at pericentric heterochromatin, chromosome 4, and telomeres. In addition, sumoylation of SU(VAR)3-7 is a prerequisite for its ability to enhance position-effect variegation. Thus, these results show that the heterochromatic function of SU(VAR)3-7 depends on its own sumoylation, and unveil a role for sumoylation in Drosophila heterochromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号