首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Schwegler  K Tarumi 《Bio Systems》1986,19(4):307-315
The concepts of self-generation, autonomous boundary and self-maintenance are explained briefly. The "protocell" is presented as a model of self-maintenance which is based on simple physical mechanisms of diffusion and reaction. The time evolution of the surface of the protocell is taken into account explicitly in the form of a Stefan condition giving rise to a non-linear feedback of the surface motion to the reaction and diffusion processes inside the protocell. The spatio-temporal dynamics are investigated, particularly in the neighbourhood of the stationary states, showing a self-maintaining behaviour under a certain range of nutritional conditions. Under another set of conditions we find an instability leading to a division process so that the population of protocells becomes self-maintaining instead of the single individual. The presented formulation of the protocell model is crucially improved compared with a previous version which required boundary conditions at infinity. The previous version was not strictly self-maintaining since dynamics outside the cell were essential for its behaviour.  相似文献   

2.
The building of minimal self-reproducing systems with a physical embodiment (generically called protocells) is a great challenge, with implications for both theory and applied sciences. Although the classical view of a living protocell assumes that it includes information-carrying molecules as an essential ingredient, a dividing cell-like structure can be built from a metabolism-container coupled system only. An example of such a system, modelled with dissipative particle dynamics, is presented here. This article demonstrates how a simple coupling between a precursor molecule and surfactant molecules forming micelles can experience a growth-division cycle in a predictable manner, and analyses the influence of crucial parameters on this replication cycle. Implications of these results for origins of cellular life and living technology are outlined.  相似文献   

3.
The quantum mechanical self-assembly of two separate photoactive supramolecular systems with different photosynthetic centers was investigated by means of density functional theory methods. Quantum entangled energy transitions from one subsystem to the other and the assembly of logically controlled artificial minimal protocells were modeled. The systems studied were based on different photoactive sensitizer molecules covalently bonded to a non-canonical oxo-guanine::cytosine supramolecule with the precursor of a fatty acid (pFA) molecule attached via Van der Waals forces, all surrounded by water molecules. The electron correlation interactions responsible for the weak hydrogen and Van der Waals chemical bonds increased due to the addition of polar water solvent molecules. The distances between the separated sensitizer, nucleotide, pFA, and water molecules are comparable to Van der Waals and hydrogen bonding radii. As a result, the overall system becomes compressed, resulting in photo-excited electron tunneling from the sensitizer (bis(4-diphenylamine-2-phenyl)-squarine or 1,4-bis(N,N-dimethylamino)naphthalene) to the pFA molecules. Absorption spectra as well as electron transfer trajectories associated with the different excited states were calculated using time dependent density functional theory methods. The results allow separation of the quantum entangled photosynthetic transitions within the same minimal protocell and with the neighboring minimal protocell. The transferred electron is used to cleave a “waste” organic molecule resulting in the formation of the desired product. A two variable, quantum entangled AND logic gate was proposed, consisting of two input photoactive sensitizer molecules and one output (pFA molecule). It is proposed that a similar process might be applied for the destruction of tumor cancer cells or to yield building blocks in artificial cells.  相似文献   

4.
Cellular life requires the presence of a set of biochemical mechanisms in order to maintain a predictable process of growth and division. Several attempts have been made towards the building of minimal protocells from a top-down approach, i.e. by using available biomolecules. This type of synthetic approach has so far been only partially successful, and appropriate models of the synthetic protocell cycle might be needed to guide future experiments. In this paper, we present a simple biochemically and physically feasible model of cell replication involving a discrete semi-permeable vesicle with an internal minimal metabolism involving two reactive centers. It is shown that such a system can effectively undergo a whole cell replication cycle. The model can be used as a basic framework to model whole protocell dynamics including more complex sets of reactions. The possible implementation of our design in future synthetic protocells is outlined.  相似文献   

5.
To develop a comprehensive cells-first approach to the origin of life, we propose that protocells form spontaneously and that the fission and fusion of these protocells drives the dynamics of their evolution. The fitness criterion for this evolution is taken to be the the stability (conservation) of domains in the protocellular membrane as determined by non-covalent molecular associations between the amphiphiles of the membrane and a subset of the macromolecules in the protocell. In the presence of a source of free energy the macromolecular content of the protocell (co-)evolves as the result of (domain-dependent) membrane-catalysed polymerisation of the prebiotic constituents delivered to the protocell by fusion. The metabolism of the cell therefore (co-)evolves on a rugged fitness landscape. We indicate how domain evolution with the same fitness criterion can potentially give rise to coding. Membrane domains may therefore provide the link between protocells and the RNA/DNA-world.  相似文献   

6.
Domain protolife     
We propose the Thermal Protein First Paradigm (protocell theory) that affirms that first life was cellular. The first cells emerged from molecular (chemical) evolution as protocells (heated amino acids self-order in copolymerization reactions to form thermal proteins which self-organize when in contact with water to form protocells). Metaprotocells are specialized protocells capable of synthesizing ATP (light energy conversion to chemical energy), polypeptides, and polynucleotides. Aggregations of protocells in thermal protein matrices form distinctive morphologies (protocellular networks). Prokaryotic cells emerged from metaprotocells. We classify protocells and metaprotocells as members of the Domain Protolife. We revised the cell theory to include protolife.  相似文献   

7.
A model is proposed for the selective accumulation of amino acids, sugars, nucleotides, cations and protons from the primordial oceans into a lipid vesicle type of protocell. The model is built on facilitated diffusion using simple, primordial, lipid-soluble carriers. The advantages a lipid vesicle protocell would have had over the other potential types of protocells are discussed.  相似文献   

8.
《Biophysical journal》2021,120(18):3937-3959
We propose a simple mechanism for the self-replication of protocells. Our main hypothesis is that the amphiphilic molecules composing the membrane bilayer are synthesized inside the protocell through exothermic chemical reactions. The slow increase of the inner temperature forces the hottest molecules to move from the inner leaflet to the outer leaflet of the bilayer. Because of this outward translocation flow, the outer leaflet grows faster than the inner leaflet. This differential growth increases the mean curvature and amplifies any local shrinking of the protocell until it splits in two. The proposed model, based on mere laws of physics, is a step in the study of the origin of life, as well as a clue for a better understanding of cell proliferation in cancer.  相似文献   

9.
Generic Darwinian selection in catalytic protocell assemblies   总被引:1,自引:0,他引:1  
To satisfy the minimal requirements for life, an information carrying molecular structure must be able to convert resources into building blocks and also be able to adapt to or modify its environment to enhance its own proliferation. Furthermore, new copies of itself must have variable fitness such that evolution is possible. In practical terms, a minimal protocell should be characterized by a strong coupling between its metabolism and genetic subsystem, which is made possible by the container. There is still no general agreement on how such a complex system might have been naturally selected for in a prebiotic environment. However, the historical details are not important for our investigations as they are related to assembling and evolution of protocells in the laboratory. Here, we study three different minimal protocell models of increasing complexity, all of them incorporating the coupling between a 'genetic template', a container and, eventually, a toy metabolism. We show that for any local growth law associated with template self-replication, the overall temporal evolution of all protocell's components follows an exponential growth (efficient or uninhibited autocatalysis). Thus, such a system attains exponential growth through coordinated catalytic growth of its component subsystems, independent of the replication efficiency of the involved subsystems. As exponential growth implies the survival of the fittest in a competitive environment, these results suggest that protocell assemblies could be efficient vehicles in terms of evolving through Darwinian selection.  相似文献   

10.
Sufficient conditions for emergent synchronization in protocell models   总被引:1,自引:0,他引:1  
In this paper, we study general protocell models aiming to understand the synchronization phenomenon of genetic material and container productions, a necessary condition to ensure sustainable growth in protocells and eventually leading to Darwinian evolution when applied to a population of protocells.Synchronization has been proved to be an emergent property in many relevant protocell models in the class of the so-called surface reaction models, assuming both linear- and non-linear dynamics for the involved chemical reactions. We here extend this analysis by introducing and studying a new class of models where the relevant chemical reactions are assumed to occur inside the protocell, in contrast with the former model where the reaction site was the external surface.While in our previous studies, the replicators were assumed to compete for resources, without any direct interaction among them, we here improve both models by allowing linear interaction between replicators: catalysis and/or inhibition. Extending some techniques previously introduced, we are able to give a quite general analytical answer about the synchronization phenomenon in this more general context. We also report on results of numerical simulations to support the theory, where applicable, and allow the investigation of cases which are not amenable to analytical calculations.  相似文献   

11.
As an issue of constructive biology, we study how molecules carrying heredity appear in a reproduction system that consists of mutually catalytic reactions. Molecules that are minority in number are shown to be preserved over generations, and control the behavior of the system. Life-critical information is then expected to be packed into such molecules and transferred over generations, leading to kinetic origin of genetic information. Relevance of this minority control to genetic takeover from loose reproduction is discussed, as a general consequence of any reproducing system with evolvability. Appropriate cell size to achieve both for reproduction and evolvability is also estimated based on this minority control mechanism.  相似文献   

12.
The origin of heredity is studied as a recursive state in a replicatingprotocell consisting of many molecule species in mutually catalyzingreaction networks. Protocells divide when the number of molecules, increasing due to replication, exceeds a certain threshold. We study how the chemicals in a catalytic network can form recursive production states in the presence of errors in the replication process. Depending on the balance between the total number of molecules in a cell and the number of molecule species, we have found three phases; a phase without a recursive production state, a phase with itinerancy over a few recursive states, and a phase with fixedrecursive production states. Heredity is realized in the latter two phaseswhere molecule species that are population-wise in the minority are preserved and control the phenotype of the cell. It is shown that evolvability is realized in the itinerancy phase, where a change in the number of minority molecules controls a change of the chemical state.  相似文献   

13.
Origin of sex   总被引:1,自引:0,他引:1  
The competitive advantage of sex consists in being able to use redundancy to recover lost genetic information while minimizing the cost of redundancy. We show that the major selective forces acting early in evolution lead to RNA protocells in which each protocell contains one genome, since this maximizes the growth rate. However, damages to the RNA which block replication and failure of segregation make it advantageous to fuse periodically with another protocell to restore reproductive ability. This early, simple form of genetic recovery is similar to that occurring in extant segmented single stranded RNA viruses. As duplex DNA became the predominant form of the genetic material, the mechanism of genetic recovery evolved into the more complex process of recombinational repair, found today in a range of species. We thus conclude that sexual reproduction arose early in the evolution of life and has had a continuous evolutionary history. We cite reasons to reject arguments for gaps in the evolutionary sequence of sexual reproduction based on the presumed absence of sex in the cyanobacteria. Concerning the maintenance of the sexual cycle among current organisms, we take care to distinguish between the recombinational and outbreeding aspects of the sexual cycle. We argue that recombination, whether it be in outbreeding organisms, self-fertilizing organisms or automictic parthenogens, is maintained by the advantages of recombinational repair. We also discuss the role of DNA repair in maintaining the outbreeding aspects of the sexual cycle.  相似文献   

14.
Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.The emergence of the first cells on the early Earth was the culmination of a long history of prior chemical and geophysical processes. Although recognizing the many gaps in our knowledge of prebiotic chemistry and the early planetary setting in which life emerged, we will assume for the purpose of this review that the requisite chemical building blocks were available, in appropriate environmental settings. This assumption allows us to focus on the various spontaneous and catalyzed assembly processes that could have led to the formation of primitive membranes and early genetic polymers, their coassembly into membrane-encapsulated nucleic acids, and the chemical and physical processes that allowed for their replication. We will discuss recent progress toward the construction of laboratory models of a protocell (Fig. 1), evaluate the remaining steps that must be achieved before a complete protocell model can be constructed, and consider the prospects for the observation of spontaneous Darwinian evolution in laboratory protocells. Although such laboratory studies may not reflect the specific pathways that led to the origin of life on Earth, they are proving to be invaluable in uncovering surprising and unanticipated physical processes that help us to reconstruct plausible pathways and scenarios for the origin of life.Open in a separate windowFigure 1.A simple protocell model based on a replicating vesicle for compartmentalization, and a replicating genome to encode heritable information. A complex environment provides lipids, nucleotides capable of equilibrating across the membrane bilayer, and sources of energy (left), which leads to subsequent replication of the genetic material and growth of the protocell (middle), and finally protocellular division through physical and chemical processes (right). (Reproduced from Mansy et al. 2008 and reprinted with permission from Nature Publishing ©2008.)The term protocell has been used loosely to refer to primitive cells or to the first cells. Here we will use the term protocell to refer specifically to cell-like structures that are spatially delimited by a growing membrane boundary, and that contain replicating genetic information. A protocell differs from a true cell in that the evolution of genomically encoded advantageous functions has not yet occurred. With a genetic material such as RNA (or perhaps one of many other heteropolymers that could provide both heredity and function) and an appropriate environment, the continued replication of a population of protocells will lead inevitably to the spontaneous emergence of new coded functions by the classical mechanism of evolution through variation and natural selection. Once such genomically encoded and therefore heritable functions have evolved, we would consider the system to be a complete, living biological cell, albeit one much simpler than any modern cell (Szostak et al. 2001).  相似文献   

15.
A dynamic imitational model of initial stages of cell evolution has been developed based on role of environmental calcium concentration. The model is designed from our hypothesis about the medium of the appearance of protocells, which could be potassium water reservoirs rather than sea salt water with its predominance of sodium salts. The necessary elements of the appearance of the protocells served organic molecules, code of their synthesis, and formation of macromolecules under favorable ion concentration in environment: a high K+ and Mg2+ and a low Na+ concentration. The model is based on an assumption that one of the first stages in evolution of life was the appearance in the potassium-magnesium water reservoirs of organic molecules capable for self-replication on the basis of genetic code and formation of protocell with the potassium cytoplasm. The model has demonstrated necessity of formation of cell envelope for development of the protocell. Replacement of the dominant cation in water reservoirs—potassium by sodium—required the appearance of ion-transporting devices in plasma membrane and their participation in adaptation of cells to environment. This stage of evolution was accompanied by the most important morphofunctional event—formation of the plasma membrane instead of cell envelope. The membrane provided the ion asymmetry in the cell (preservation of K+ in it) relatively to the sodium external medium for maintaining optimal intracellular medium. In the model system, predecessors of animal cells elaborated mechanism of maintenance of the potassium cytoplasm with the sodium counterion dominating in the environment.  相似文献   

16.
An alternative to creating novel organisms through the traditional “top-down” approach to synthetic biology involves creating them from the “bottom up” by assembling them from non-living components; the products of this approach are called “protocells.” In this paper we describe how bottom-up and top-down synthetic biology differ, review the current state of protocell research and development, and examine the unique ethical, social, and regulatory issues raised by bottom-up synthetic biology. Protocells have not yet been developed, but many expect this to happen within the next five to ten years. Accordingly, we identify six key checkpoints in protocell development at which particular attention should be given to specific ethical, social and regulatory issues concerning bottom-up synthetic biology, and make ten recommendations for responsible protocell science that are tied to the achievement of these checkpoints.  相似文献   

17.
de Boer FK  Hogeweg P 《PloS one》2012,7(1):e29952
It is still not clear how prebiotic replicators evolved towards the complexity found in present day organisms. Within the most realistic scenario for prebiotic evolution, known as the RNA world hypothesis, such complexity has arisen from replicators consisting solely of RNA. Within contemporary life, remarkably many RNAs are involved in modifying other RNAs. In hindsight, such RNA-RNA modification might have helped in alleviating the limits of complexity posed by the information threshold for RNA-only replicators. Here we study the possible role of such self-modification in early evolution, by modeling the evolution of protocells as evolving replicators, which have the opportunity to incorporate these mechanisms as a molecular tool. Evolution is studied towards a set of 25 arbitrary 'functional' structures, while avoiding all other (misfolded) structures, which are considered to be toxic and increase the death-rate of a protocell. The modeled protocells contain a genotype of different RNA-sequences while their phenotype is the ensemble of secondary structures they can potentially produce from these RNA-sequences. One of the secondary structures explicitly codes for a simple sequence-modification tool. This 'RNA-adapter' can block certain positions on other RNA-sequences through antisense base-pairing. The altered sequence can produce an alternative secondary structure, which may or may not be functional. We show that the modifying potential of interacting RNA-sequences enables these protocells to evolve high fitness under high mutation rates. Moreover, our model shows that because of toxicity of misfolded molecules, redundant coding impedes the evolution of self-modification machinery, in effect restraining the evolvability of coding structures. Hence, high mutation rates can actually promote the evolution of complex coding structures by reducing redundant coding. Protocells can successfully use RNA-adapters to modify their genotype-phenotype mapping in order to enhance the coding capacity of their genome and fit more information on smaller sized genomes.  相似文献   

18.
A dynamic imitational model is developed of initial stages of cell evolution based on role of environmental cation concentration. The model is developed on our hypothesis, concerning the medium of the appearance of protocells. Could be potassium water reservoirs rather than sea salt water with its predominance of sodium salts. The necessary elements of appearance the protocells served organic molecules, code of their synthesis, and formation of macromolecules under favorable ion concentration in environment High K+ and Mg2+ concentration and bow Na+. The model is based on an assumption that one of the first stages in evolution of life was the appearance in potassium-magnesium water reservoirs of organic molecules capable for selfreplication on the basis of genetic code and formation of protocells with potassium cytoplasm. The model has demonstrated necessity of formation of cell envelope for development of the protocell. Replacement of the dominant cation in water reservoirs-potassium by sodium-required the appearance of ion-transporting devices in plasma membrane and their participation in adaptation of cells to environment. This stage of evolution was accompanied by the most important morpho-functional event--formation of the plasma membrane instead of cell envelope. The membrane provided the ion asymmetry in the cell (preservation of K+ in it) relatively to the sodium external medium for maintaining optimal intracellular medium. In the model system, predecessors of animal cells elaborated mechanism of maintenance of the potassium cytoplasm with the sodium counter-ion dominating in the environment.  相似文献   

19.
The imposing progress in understanding contemporary life forms on Earth and in manipulating them has not been matched by a comparable progress in understanding the origins of life. This paper argues that a crucial problem of unzipping of the double helix molecule of nucleic acid during its replication has been underrated, if not plainly overlooked, in the theories of life's origin and evolution. A model is presented of how evolution may have solved the problem in its early phase. Similar to several previous models, the model envisages the existence of a protocell, in which osmotic disbalance is being created by accumulation of synthetic products resulting in expansion and division of the protocell. Novel in the model is the presence in the protocell of a double-stranded nucleic acid, with each of its two strands being affixed by its 3'-terminus to the opposite sides of the membrane of a protocell. In the course of the protocell expansion, osmotic force is utilized to pull the two strands longitudinally in opposite directions, unzipping the helix and partitioning the strands between the two daughter protocells. The model is also being used as a background for arguments of why life need operate in cycles. Many formal models of life's origin and evolution have not taken into account the fact that logical possibility does not equal thermodynamic feasibility. A system of self-replication has to consist of both replicators and replicants.  相似文献   

20.
The origin of the directed motion of protocells during the early stages of evolution was discussed. The expenditures for movement, space orientation, and reception of information about the environment were taken into consideration, and it was shown that directed movement is evolutionarily advantageous in the following cases: when opposite gradients of different resources (for example, matter and energy) are great enough and when there is a rapid change in environmental parameters. It was also shown that the advantage of directed movement strategies depends greatly on how information about the environment is obtained by a protocell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号