首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of various scavengers of reactive oxygen and/or radical species on cell survival in vitro of EMT6 and CHO cells following photodynamic therapy (PDT) or gamma irradiation were compared. None of the agents used exhibited major direct cytotoxicity. Likewise, none interfered with cellular porphyrin uptake, and none except tryptophan altered singlet oxygen production during porphyrin illumination. The radioprotector cysteamine (MEA) was equally effective in reducing cell damage in both modalities. In part, this protection seems to have been induced by oxygen consumption in the system due to MEA autoxidation under formation of H2O2. The addition of catalase, which prevents H2O2 buildup, reduced the effect of MEA to the same extent in both treatments. Whether the remaining protection was due to MEA's radical-reducing action or some remaining oxygen limitation is unclear. The protective action of MEA was not mediated by a doubling of cellular glutathione levels, since addition of buthionine sulfoximine, which prevented glutathione increase, did not diminish the observed MEA protection. The hydroxyl radical scavenger mannitol also afforded protection in both kinds of treatment, but it was approximately twice as effective in gamma irradiation as in PDT. This is consistent with the predominant role of OH radicals in ionizing radiation damage and their presumed minor involvement in PDT damage. Superoxide dismutase, a scavenger of O2, acted as a radiation protector but was not significantly effective in PDT. Catalase, which scavenges H2O2, was ineffective in both modalities. Tryptophan, an efficient singlet oxygen scavenger, reduced cell death through PDT by several orders of magnitude while being totally ineffective in gamma irradiation. These data reaffirm the predominant role of 1O2 in the photodynamic cell killing but also indicate some involvement of free radical species.  相似文献   

2.
Melanoma is the most severe of all skin cancers as it may grow rapidly and metastasize. The application of photodynamic therapy (PDT) opens new perspectives in treatment of this cancer. Numerous studies suggest that the exposure of tumor cells to PDT can lead to cell death via two separate processes: apoptosis or necrosis. The aim of this study was to assess in vitro photodynamic therapy which induces apoptosis in the human Beidegr?m Melanoma (BM) cell line, using neutral comet assay. The cells were incubated with Photofrin II (15 microg/ml and 30 microg/ml) 4 h before and 3 h after irradiation for 5 or 10 min with the light intensity of 10 mW/cm2, using a lamp with red filter (632.8 nm). The percentage of apoptotic cells was significantly higher after PDT comparing to control cells. We observed 25% and 70% of apoptotic cells after shorter irradiation and treatment with 15 microg/ml and 30 microg/ml of Ph II, respectively. After longer irradiation, the respective values were 71.9% and 90%. The results suggest that induction of apoptosis is an important determinant of photodynamic sensitivity in the studied cell line and that some types of DNA damage are dependent on photosensitizer concentration and time of irradiation.  相似文献   

3.
Previous studies have shown the non-mutability of Haemophilus influenzae either by UV irradiation of the cells or by irradiating the transforming DNA and transformation of competent cells. In the present work, we present evidence of transforming DNA mutation in vitro by UV irradiation at -70 degrees C, which upon transformation of competent cells showed a rise in the mutation frequencies of novobiocin resistance of the order of several hundredfold. Also we performed experiments using the UV-irradiated DNA either sonicated or DNase-treated, which allowed us to propose that such rise in mutation frequency is probably due to the integration of DNA carrying premutagenic photoproducts to the recipient cells' genome. We think that the key point was the low temperature at which the DNA was irradiated in order to obtain the mutagenic effects, since it is likely that at -70 degrees C, the main photoproducts are not the cyclobutane dimers, but are the spore photoproducts, which are probably responsible for the damage that leads to mutagenic effects.  相似文献   

4.
Photodynamic treatment is a minimally invasive and clinically approved procedure for eliminating selected malignant cells with activation of a photosensitizer agent at a specific light. Little is known, however, about the phototoxic properties of curcumin, as a natural phenolic compound, against different types of cancers. It is generally accepted that cellular damage occurs during photo treatment. There is a limitation in using of curcumin as a drug due to its low solubility, but nanoparticles such as anionic nanoclays or layered double hydroxide (LDH) could overcome it. The aim of this study was to investigate cellular responses to curcumin-LDH nanoparticles after photodynamic treatment of MDA-MB-231 human breast cancer cells. For this purpose, the MDA-MB-231 human breast cancer cell line treated with curcumin-LDH nanoparticle and then irradiated (photodynamic treatment). After irradiation, lactate dehydrogenase assay, clonogenic cell survival, cell death mechanisms such as autophagy and apoptosis were determined. Cell cycle distribution after photodynamic therapy (PDT) and also intracellular reactive oxygen species (ROS) generation were measured. The result showed that curcumin-LDH–PDT has a cytotoxic and antiprolifrative effect on MDA-MB-231 human breast cancer cells. Curcumin-LDH–PDT induced autophagy, apoptosis, and G0/G1 cell cycle arrest in human breast cancer cell line. Intracellular ROS increased in MDA-MB-231 cancer cell line after treatment with curcumin-LDH along with irradiation. The results suggest that curcumin-LDH nanoparticle could be considered as a novel approach in the photodynamic treatment of breast cancer.  相似文献   

5.
A porphyrin with amino acid moieties was synthesized in this work, which may be a latent photosensitizer for photodynamic therapy (PDT). Adler's strategy was used to synthesize meso-tetra (4-nitrophenyl) porphyrin (TNPP) through cyclolization of 4-nitrobenzaldhyde and pyrrole in refluxed nitrobenzene. Reduction of TNPP yielded meso-tetra(4-aminophenyl) porphyrin (TAPP). The synthesis was improved by employing lactic acid as a catalyst. Based on TAPP, porphyrin with valine (TAPP-4Val) was obtained. The application of the resultant TAPP-4Val as tumor photosensitizer on human breast tumor cells for photodynamic therapy (PDT) was preliminarily explored. Dark-toxicity evaluations showed that, under a concentration at up to 6 x 10(-6) M, the survival of MCF-7 cells was larger than 90%, which means TAPP-4Val is almost of non-cytotoxicity. However, TAPP-4Val showed remarkable phototoxicity after visible light irradiation. Effects of irradiation time on the survival of cells under typical concentrations of TAPP-4Val were also studied. The new porphyrin with amino acid moieties, TAPP-4Val, is of high phototoxicity but minimal or no dark-toxicity, which can be used as an effective photosensitizer for PDT.  相似文献   

6.
COVID-19 appeared in December 2019, needing efforts of science. Besides, a range of light therapies (photodynamic therapy, ultraviolet [UV], laser) has shown scientific alternatives to conventional decontamination therapies. Investigating the efficacy of light-based therapies for environment decontamination against SARS-CoV2, a PRISMA systematic review of Phototherapies against SARS-CoV or MERS-CoV species discussing changes in viral RT-PCR was done. After searching MEDLINE/PubMed, EMBASE, and Literatura Latino-Americana e do Caribe em Ciências da Saúde we have found studies about cell cultures irradiation (18), blood components irradiation (10), N95 masks decontamination (03), inanimate surface decontamination (03), aerosols decontamination (03), hospital rooms irradiation (01) with PDT, LED, and UV therapy. The best quality results showed an effective low time and dose UV irradiation for environments and inanimate surfaces without human persons as long as the devices have safety elements dependent on the surfaces, viral charge, humidity, radiant exposure. To interpersonal contamination in humans, PDT or LED therapy seems very promising and are encouraged.  相似文献   

7.
光动力疗法(PDT)具有微创、可控、低毒、可重复治疗等优点,已成为临床医学中不可缺少的治疗手段。但由于肿瘤细胞的自我保护机制,大大降低了PDT疗效。使用PDT治疗方法的同时实施药理自噬抑制策略,切断因光动力治疗下严重氧化损伤下的保护性自噬。通过油浴加热法合成卟啉金属有机框架PCN-224,并在PCN-224上负载自噬抑制剂硫酸羟氯喹(HCQ),通过扫描电子显微镜(SEM)、粒径测试(DLS)、紫外可见光谱测试等方法检测,结果表明成功地合成了该材料,增强了卟啉光敏剂的水溶性,并且光照后对4T1小鼠乳腺癌细胞毒性明显增强,且装载了HCQ后进一步提高了肿瘤杀伤能力。  相似文献   

8.
For the improvement of therapeutic efficacy in photodynamic therapy (PDT) by using a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD-MA), we previously prepared polyethylene glycol (PEG)-modified liposomes encapsulating BPD-MA (PEG-Lip BPD-MA). PEGylation of liposomes enhanced the accumulation of BPD-MA in tumor tissue at 3 h after injection of it into Meth-A-sarcoma-bearing mice, but, unexpectedly, decreased the suitability of the drug for PDT when laser irradiation was performed at 3 h after the injection of the liposomal photosensitizer. To improve the bioavailability of PEG-Lip BPD-MA, we endowed the liposomes with active-targeting characteristics by using Ala-Pro-Arg-Pro-Gly (APRPG) pentapeptide, which had earlier been isolated as a peptide specific to angiogenic endothelial cells. APRPG-PEG-modified liposomal BPD-MA (APRPG-PEG-Lip BPD-MA) accumulated in tumor tissue similarly as PEG-Lip BPD-MA and to an approx. 4-fold higher degree than BPD-MA delivered with non-modified liposomes at 3 h after the injection of the drugs into tumor-bearing mice. On the contrary, unlike the treatment with PEG-Lip BPD-MA, APRPG-PEG-Lip BPD-MA treatment strongly suppressed tumor growth after laser irradiation at 3 h after injection. Finally, we observed vasculature damage in the dorsal air sac angiogenesis model by APRPG-PEG-Lip BPD-MA-mediated PDT. The present results suggest that antiangiogenic PDT is an efficient modality for tumor treatment and that tumor neovessel-targeted, long-circulating liposomes are a useful carrier for delivering photosensitizer to angiogenic endothelial cells.  相似文献   

9.
For the improvement of therapeutic efficacy in photodynamic therapy (PDT) by using a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD-MA), we previously prepared polyethylene glycol (PEG)-modified liposomes encapsulating BPD-MA (PEG-Lip BPD-MA). PEGylation of liposomes enhanced the accumulation of BPD-MA in tumor tissue at 3 h after injection of it into Meth-A-sarcoma-bearing mice, but, unexpectedly, decreased the suitability of the drug for PDT when laser irradiation was performed at 3 h after the injection of the liposomal photosensitizer. To improve the bioavailability of PEG-Lip BPD-MA, we endowed the liposomes with active-targeting characteristics by using Ala-Pro-Arg-Pro-Gly (APRPG) pentapeptide, which had earlier been isolated as a peptide specific to angiogenic endothelial cells. APRPG-PEG-modified liposomal BPD-MA (APRPG-PEG-Lip BPD-MA) accumulated in tumor tissue similarly as PEG-Lip BPD-MA and to an approx. 4-fold higher degree than BPD-MA delivered with non-modified liposomes at 3 h after the injection of the drugs into tumor-bearing mice. On the contrary, unlike the treatment with PEG-Lip BPD-MA, APRPG-PEG-Lip BPD-MA treatment strongly suppressed tumor growth after laser irradiation at 3 h after injection. Finally, we observed vasculature damage in the dorsal air sac angiogenesis model by APRPG-PEG-Lip BPD-MA-mediated PDT. The present results suggest that antiangiogenic PDT is an efficient modality for tumor treatment and that tumor neovessel-targeted, long-circulating liposomes are a useful carrier for delivering photosensitizer to angiogenic endothelial cells.  相似文献   

10.
Photodynamic therapy (PDT) has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS) regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma.  相似文献   

11.
Previously we demonstrated that two consecutive in vitro irradiations of MCA 102 cells with high doses of UVC light (610 and 457 J/m2) resulted in a selection of a permanent line MCA 102UV that manifested high sensitivity to natural cell-mediated cytotoxicity (NCMC). In the present study analysis of the effector cells involved in lysis of these tumor cells was performed by comparing the cytotoxicity of normal spleen cells which mediated both NK and NC cell activity with (a) normal spleen cells in which NC activity was neutralized by anti-TNF Abs (NK+,NC-), (b) NK-depleted or NK-deficient spleen cells (NK-,NC+), and (c) NK-deficient or -depleted spleen cells with NC activity neutralized by anti-TNF Abs (NK-,NC-). Results of these studies indicate that lysis of the original MCA 102 tumor cells was relatively low and was mediated by NC cells. UV irradiation significantly increased MCA 102 tumor cell sensitivity to lysis by both NK and NC cells. Analysis of the mechanisms involved in UV-induced NK sensitivity revealed that UV irradiation increased tumor cell susceptibility to lytic NK-derived granules. NC sensitivity of MCA 102UV tumor cells was associated with their increase in sensitivity to TNF and selection of MCA 102UV cells for resistance to rTNF resulted in a decrease in their susceptibility to NC cells. To determine how fast UV-induced sensitivity to NCMC and rTNF can be established, 51Cr-labeled MCA 102 cells were irradiated in vitro with 38-304 J/m2 of UVC light and their sensitivity to lysis by spleen cells and rTNF was tested immediately in an 18-hr cytotoxicity assay. UV treatment with the same doses was repeated 12 days later. The data obtained showed that tumor cell sensitivity to NCMC and TNF appeared shortly after UV irradiation, was stable, and was further substantially augmented by the second round of UV treatment. Thus, in vitro UV irradiation of tumor cells could be an effective modulator of tumor cell sensitivity to TNF-dependent and TNF-independent cell-mediated cytotoxicity.  相似文献   

12.
This study focuses on the synthesis, characterization, and assessment of the synergistic effect of 2,2,6,6, tetramethylpiperidine-N-oxyl (TEMPO)-coated titanium dioxide nanorods (TiO2 NRs) for photodynamic therapy (PDT). Firstly, TiO2 NRs were synthesized by the sol–gel technique. Then, TEMPO was grafted on TiO2 NRs with the aid of oxoammonium salts. Next, the final product was characterized by applying manifold characterization techniques. X-ray diffraction was used to perform crystallographic analysis; transmission electron microscopy (TEM) was used to conduct morphological analysis; Fourier transform infrared (FTIR) and Raman spectra were recorded to perform molecular fingerprint analysis. Furthermore, experimental and empirical modeling was performed to confirm the suitability of as-prepared samples for PDT applications using (MCF-7 cell line) Human Breast Cancer cell line. Our results revealed that bare TiO2 NRs did not exhibit a significant response for therapeutic applications compared to TEMPO-conjugated TiO2 NRs in the dark; however, they exhibited a prominent response for the PDT application under UV-A light. Therefore, it is concluded that TEMPO-coated TiO2 NRs shows the synergistic response for therapeutic approach under UV-A light irradiation. In addition, TEMPO capped TiO2 nanorods not only overcome the multidrug resistance (MDR) hindrance but also exhibit excellent response for cancer cell (MCF-7 cells) treatment only under UV light irradiation via PDT. It is expected that the proposed TiO2 NRs + TEMPO nanocomposite, which is suitable for PDT treatment, may be essential for photodynamic therapy.  相似文献   

13.
A high frequency of morphogenetic mutants of Dictyostelium discoideum can be induced by treatment with MNNG under conditions which result in relatively low cell killing. Six temperature-sensitive growth mutants induced by this treatment were isolated by replica plating. Among these, five showed spontaneous reversion rates of 10(-4) to 10(-5). The mutagenic activity of ems, measured for the induction of both morphogenetic and temperature-sensitive mutants, was weaker than that of MNNG and UV radiation. High frequencies of morphogenetic mutants were obtained only with doses of UV irradiation that resulted in high killing of cells or spores. Caffeine, at concentrations that slightly decreased the growth rate of amoebae in axenic medium, induced morphogenetic defects and also enhanced the mutagenic effect of UV irradiation. However, all the aggregateless clones derived from caffeine treatment that were studied reverted to the wild-type phenotype after a variable number of clonal re-isolations.  相似文献   

14.
In photodynamic therapy (PDT) the photosensitiser 5-aminolaevulinic acid (ALA) can be used by systemic or topical application. Previous experiments showed that the photodynamic effects might not be mediated solely by porphyrins localized in the parenchyma, but also by porphyrins in the microvasculature. Therefore, the microcirculatory effects of PDT following systemic versus topical application of ALA have been investigated. Amelanotic melanomas were implanted in the dorsal skin fold chamber of Syrian Golden hamsters. ALA was injected i.v. for systemic PDT before irradiation, whereas ALA was applied to the chambers for topical PDT before irradiation with an incoherent lamp. FITC-labelled erythrocytes were injected to determine red blood cell velocity (RBCV) and functional vessel density (FVD). Twenty-four hours after PDT tissue was taken for histology and immunohistochemistry to reveal the degree of apoptosis and to show the accumulation of leukocytes. FVD or RBCV was not altered significantly by systemic or topical low-dose PDT (10 J cm(-2)), whereas a significant reduction of RBCV and FVD was detected after high-dose PDT (100 J cm(-2)) following systemic or topical application of ALA. Systemic PDT with 100 J cm(-2) stopped the flow only in the tumor center, whereas topical PDT with 100 J cm(-2) lead to a breakdown of RBCV in all chamber areas. Two hours and 24 h after systemic high-dose PDT, perfused microvessels and capillaries could be detected in normal tissue and tumor periphery, in contrast to topical high-dose PDT leading to a shut down of FVD 24 h after irradiation in all areas of the chamber tissue. Histological staining revealed a more pronounced intracellular oedema and swelling of cells after topical high-dose PDT than systemic high-dose PDT. These results indicate that topical high-dose PDT with ALA has a more pronounced effect on microcirculation as compared to systemic high-dose PDT in this model.  相似文献   

15.
We examined the relationship of cytotoxicity, mutagenesis, and malignant transformation by measuring in parallel clonogenic survival, mutation to ouabain resistance, and malignant transformation in cultured C3H mouse 10T 1/2 cells. Exposure of caffeine alone for 48 hours was cytotoxic and induced transformation in a dose-dependent manner. However, this same treatment did not induce any detectable ouabain-resistant mutants. When caffeine was present for 48 hours immediately following UV irradiation, alkaline sucrose gradient sedimentation of DNA showed that postreplication repair was inhibited. This inhibition of repair was correlated with reduced survival and inhibition of mutation induction, but the transformation frequencies were either unaltered or potentiated, depending on the UV dose and caffeine concentration. Thus, these experiments demonstrate that gene mutation and malignant transformation in 10T 1/2 cells can be dissociated. We suggest that the mechanism of transformation of 10T 1/2 cells is nonmutagenic in nature.  相似文献   

16.
Photodynamic therapy (PDT), a new treatment modality for localized cancers involving the selective interaction of visible light with photosensitizers, such as hematoporphyrin derivatives (HpD) or dihematoporphyrin ether/ester (DHE) (Photofrin II). Photodynamic therapy of malignant tumors includes biological, photochemical and photophysical processes. These processes involve: (i) absorption of photosensitizing agent; (ii) selective retention of photosensitizer in tumors and (iii) irradiation of sensitized tumor by laser irradiation. This paper provides a review of photosensitizers, photochemistry, subcellular targets, side effects and lasers involved in photodynamic therapy. In addition, gradual increase in knowledge related to in vivo and in vitro mechanisms of action of PDT, as well as some clinical applications of photodynamic therapy are presented.  相似文献   

17.
18.
The present paper deals with effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the frequency of induced mutations to 6-mercaptopurine (6MP) and ouabain resistance in Chinese hamster and mouse cells. UV light, bovine adenovirus 3(BAV-3) and 5-bromodeoxyuridine (BrdU) were used as mutagens. TPA was shown to raise the frequency of gene mutations induced by UV light and BAV-3 but it did not enhance the mutagenic effect of BrdU. We also examined the ability of BAV-3 and BrdU to induce tumours in mice. BrdU was shown to have no carcinogenic effect. The results suggest that TPA enhances the mutagenic effect only for carcinogenic mutagens.  相似文献   

19.
Photodynamic therapy (PDT) is a promising local treatment modality based on the selective accumulation of a photosensitizer in malignant tissues and the subsequent irradiation with laser light. Photodynamic therapy of malignant tumors includes biological, photochemical and photophysical processes. These processes involve: (a) absorption of photosensitizing agent; (b) selective retention of the photosensitizer in tumors and (c) irradiation of sensitized tumor by laser radiation. This report provides a review of photosensitizers, photochemistry, subcellular targets, side effects and laser involved in photodynamic therapy. In addition, gradual increase in knowledge related to in vitro and in vivo mechanisms of action of PDT, as well as some clinical applications of photodynamic therapy are presented.  相似文献   

20.
目的:探讨不同的光动力剂量下光动力疗法(photodynam ic therapy,PDT)对体外培养的铜绿假单胞杆菌的杀伤效应。方法:以耐药性较强的铜绿假单胞杆菌(Pseudom onas aeruginos,P.aeruginosa)为研究对象,采用亚甲基蓝(m ethylene b lue,MB)作为光敏剂,用656 nm的激光作为光源(m axoutput=300 mW),对不同系列浓度的MB进行不同剂量的光照,用菌落计数的办法来观测PDT对铜绿假单胞杆菌的杀伤作用;同时利用血培养基检测铜绿假单胞杆菌致病性的改变。结果:在光照剂量相同的情况下,浓度适中(131.7 m ol)的亚甲基蓝溶液能够有效地杀伤铜绿假单胞杆菌,使其致病性降低;而浓度较高(1 317 m ol)或较低(13.17 m ol)的亚甲基蓝溶液对铜绿假单胞杆菌的杀伤作用相对较弱。结论:光动力作用对体外培养的铜绿假单胞杆菌具有明确的杀伤作用,但是其效果和剂量关系密切,所以在治疗过程中必须寻找合适的光敏剂剂量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号