首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
RLI1 is an essential yeast protein closely related in sequence to two soluble members of the ATP-binding cassette family of proteins that interact with ribosomes and function in translation elongation (YEF3) or translational control (GCN20). We show that affinity-tagged RLI1 co-purifies with eukaryotic translation initiation factor 3 (eIF3), eIF5, and eIF2, but not with other translation initiation factors or with translation elongation or termination factors. RLI1 is associated with 40 S ribosomal subunits in vivo, but it can interact with eIF3 and -5 independently of ribosomes. Depletion of RLI1 in vivo leads to cessation of growth, a lower polysome content, and decreased average polysome size. There was also a marked reduction in 40 S-bound eIF2 and eIF1, consistent with an important role for RLI1 in assembly of 43 S preinitiation complexes in vivo. Mutations of conserved residues in RLI1 expected to function in ATP hydrolysis were lethal. A mutation in the second ATP-binding cassette domain of RLI1 had a dominant negative phenotype, decreasing the rate of translation initiation in vivo, and the mutant protein inhibited translation of a luciferase mRNA reporter in wild-type cell extracts. These findings are consistent with a direct role for the ATP-binding cassettes of RLI1 in translation initiation. RLI1-depleted cells exhibit a deficit in free 60 S ribosomal subunits, and RLI1-green fluorescent protein was found in both the nucleus and cytoplasm of living cells. Thus, RLI1 may have dual functions in translation initiation and ribosome biogenesis.  相似文献   

2.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

3.
Eukaryotic translation initiation factor 6 (eIF6), a monomeric protein of about 26 kDa, can bind to the 60S ribosomal subunit and prevent its association with the 40S ribosomal subunit. In Saccharomyces cerevisiae, eIF6 is encoded by a single-copy essential gene. To understand the function of eIF6 in yeast cells, we constructed a conditional mutant haploid yeast strain in which a functional but a rapidly degradable form of eIF6 fusion protein was synthesized from a repressible GAL10 promoter. Depletion of eIF6 from yeast cells resulted in a selective reduction in the level of 60S ribosomal subunits, causing a stoichiometric imbalance in 60S-to-40S subunit ratio and inhibition of the rate of in vivo protein synthesis. Further analysis indicated that eIF6 is not required for the stability of 60S ribosomal subunits. Rather, eIF6-depleted cells showed defective pre-rRNA processing, resulting in accumulation of 35S pre-rRNA precursor, formation of a 23S aberrant pre-rRNA, decreased 20S pre-rRNA levels, and accumulation of 27SB pre-rRNA. The defect in the processing of 27S pre-rRNA resulted in the reduced formation of mature 25S and 5.8S rRNAs relative to 18S rRNA, which may account for the selective deficit of 60S ribosomal subunits in these cells. Cell fractionation as well as indirect immunofluorescence studies showed that c-Myc or hemagglutinin epitope-tagged eIF6 was distributed throughout the cytoplasm and the nuclei of yeast cells.  相似文献   

4.
5.
Eukaryotic translation initiation factor 6 (eIF6), also termed p27BBP, is an evolutionary conserved regulator of ribosomal function. The protein is involved in maturation and/or export from the nucleus of the 60S ribosomal subunit. Regulated binding to and release from the 60S subunit also regulates formation of 80S ribosomes, and thus translation. The protein is also found in hemidesmosomes of epithelial cells expressing beta4 integrin and is assumed to regulate cross-talk between beta4 integrin, intermediate filaments and ribosomes. In the present study we show that the Dictyostelium eIF6 (also called p27BBP) gene is expressed during growth, down-regulated during the first hours of starvation, and up-regulated again at the end of aggregation. Phagocytosis, and to a lesser extent pinocytic uptake of axenic medium, stimulate gene expression in starving cells. The eIF6 gene is present in single copy and its ablation is lethal. We utilized the green fluorescent protein (GFT) as fusion protein marker to investigate sequences responsible for eIF6 subcellular localization. The protein is found both in cytoplasm and nucleus, and is enriched in nucleoli. Deletion sequence analysis shows that nucle(ol)ar localization sequences are located within the N- and C-terminal subdomains of the protein.  相似文献   

6.
Up-regulation of PDCD4 in senescent human diploid fibroblasts   总被引:3,自引:0,他引:3  
Programmed cell death 4 (PDCD4) has a common MI domain sharing with death associated protein 5 (DAP5) and a component of eukaryotic translation initiation factor (eIF4G) complex and it might also work as a tumor suppressor. We could find that the message and product of Pdcd4 gene were up-regulated in senescent human diploid fibroblasts. In yeast two hybrid analysis, the C-terminal region of PDCD4 interacted with ribosomal protein S13 (RPS13), ribosomal protein L5 (RPL5), and TI-227H. In in vitro binding assay, RPS13, a component of 40S ribosome was stably bound to PDCD4. We also found that PDCD4 was localized to polysome fractions. We could pull out eIF4G with GST-PDCD4, but eIF4E did not interact with PDCD4. From these results, we could assume that PDCD4 might regulate the eIF4G-dependent translation through direct interactions with eIF4G and RPS13 in senescent fibroblasts.  相似文献   

7.
Transformant phages expressing L15, a yeast ribosomal protein which binds to 26S rRNA and interacts with the acidic ribosomal proteins, were isolated by screening a yeast cDNA expression library in lambda gt11 with specific monoclonal antibodies. Using yeast DNA HindIII fragments that hybridize with the cDNA insert from the L15-expressing clones, minilibraries were prepared in pUC18, which were afterward screened with the same cDNA probe. In this way, plasmids carrying two different types of genomic DNA inserts were obtained. The inserts were subcloned and sequenced and we found a similar coding sequence in both cases flanked by 5' and 3' regions with very low homology. Sequences homologous to the consensus TUF-binding UAS boxes are present in the 5' flanking regions of both genes. Southern analysis revealed the presence of two copies of the L15 gene in the Saccharomyces cerevisiae genome, which are located in different chromosomes. The encoded amino acid sequence corresponds, as expected, to protein L15 and shows a high similarity to bacterial ribosomal protein L11.  相似文献   

8.
Eukaryotic translation initiation factor 4GI (eIF4GI) is an essential protein that is the target for translational regulation in many cellular processes and viral systems. It has been shown to function in both cap-dependent and cap-independent translation initiation by recruiting the 40S ribosomal subunit to the mRNA cap structure or internal ribosome entry site (IRES) element, respectively. Interestingly eIF4GI mRNA itself has been reported to contain an IRES element in its 5' end that facilitates eIF4GI protein synthesis via a cap-independent mechanism. In HeLa cells, eIF4GI exists as several isoforms that differ in their migration in sodium dodecyl sulfate (SDS) gels; however, the nature of these isoforms was unclear. Here, we report a new cDNA clone for eIF4GI that extends the 5' sequence 340 nucleotides beyond the previously published sequence. The new extended sequence of eIF4GI is located on chromosome 3, within two additional exons immediately upstream of the previously published eIF4GI sequence. When mRNA transcribed from this cDNA clone was translated in vitro, five eIF4GI polypeptides were generated that comigrated in SDS-polyacrylamide gels with the five isoforms of native eIF4GI. Furthermore, translation of eIF4GI-enhanced green fluorescent protein fusion constructs in vitro or in vivo generated five isoforms of fusion polypeptides, suggesting that multiple isoforms of eIF4GI are generated by alternative translation initiation in vitro and in vivo. Mutation of two of the five in-frame AUG residues in the eIF4GI cDNA sequence resulted in loss of corresponding polypeptides after translation in vitro, confirming alternate use of AUGs as the source of the multiple polypeptides. The 5' untranslated region of eIF4GI mRNA also contains an out-of-frame open reading frame (ORF) that may down-regulate expression of eIF4GI. Further, data are presented to suggest that a proposed IRES embedded in the eIF4GI ORF is able to catalyze synthesis of multiple eIF4GI isoforms as well. Our data suggest that expression of the eIF4GI isoforms is partly controlled by a complex translation strategy involving both cap-dependent and cap-independent mechanisms.  相似文献   

9.
A gene, TIF2, was identified as corresponding to the translation initiation factor eIF4A and when overexpressed it confers lithium tolerance in galactose medium to Saccharomyces cerevisiae. Incubation of yeast with 6 mm LiCl in galactose medium leads to inhibition of [(35)S]methionine incorporation. By polysome analysis we show that translation is inhibited by lithium at the initiation step, accumulating 80 S monosomes. We further show by immunoblot analysis that when cells are incubated with lithium eIF4A does not sediment with ribosomal subunits. Overexpression of TIF2 overcomes inhibition of protein synthesis and restores its sedimentation with the initiation complex. In vivo, eIF4A is induced by lithium stress. We have shown previously that lithium is highly toxic to yeast when grown in galactose medium mainly due to inhibition of phosphoglucomutase, an enzyme responsible for the entry of galactose into glycolysis. We show that conditions that revert inhibition of phosphoglucomutase also revert inhibition of protein synthesis. Interestingly, glucose starvation leads to loss of polysomes but not to dissociation of eIF4A from the preinitiation complexes. Overexpression of SIT4, a protein phosphatase related to the TOR kinase pathway, reverts inhibition of protein synthesis by lithium and association of eIF4A with the initiation complex.  相似文献   

10.
Eukaryotic translation initiation factor 6 (eIF6), also termed p27BBP, is an evolutionary conserved regulator of ribosomal function. The protein is involved in maturation and/or export from the nucleus of the 60S ribosomal subunit. Regulated binding to and release from the 60S subunit also regulates formation of 80S ribosomes, and thus translation. The protein is also found in hemidesmosomes of epithelial cells expressing β4 integrin and is assumed to regulate cross-talk between β4 integrin, intermediate filaments and ribosomes. In the present study we show that the Dictyostelium eIF6 (also called p27BBP) gene is expressed during growth, down-regulated during the first hours of starvation, and up-regulated again at the end of aggregation. Phagocytosis, and to a lesser extent pinocytic uptake of axenic medium, stimulate gene expression in starving cells. The eIF6 gene is present in single copy and its ablation is lethal. We utilized the green fluorescent protein (GFT) as fusion protein marker to investigate sequences responsible for eIF6 subcellular localization. The protein is found both in cytoplasm and nucleus, and is enriched in nucleoli. Deletion sequence analysis shows that nucle(ol)ar localization sequences are located within the N- and C-terminal subdomains of the protein.  相似文献   

11.
Polyclonal antibodies directed against a synthetic octapeptide of the cAMP-dependent phosphorylation site of the ribosomal protein S6 of rat liver were used to screen a lambda gt11 cDNA expression library of human lymphoblasts. An S6 specific clone was isolated. It consists of the complete coding sequence of 747 base pairs and the 3' noncoding region of 40 base pairs. The sequence of 249 amino acids was deduced from the nucleotide sequence. The amino- and carboxyl-terminal regions are almost identical to the reported partial peptide sequences of rat liver S6. The yeast protein S10 is homologous to the human S6 with the exception of 3 amino acid insertions and a carboxyl-terminal extension of 10 amino acids within the human S6. The only two phosphorylation sites at the carboxyl terminus of yeast S10 are homologous to the two cAMP-dependent sites in human S6. Since there are additional phosphorylation sites in mammalian S6, one can assume that they are located in the cluster of 5 serines within the carboxyl-terminal extension. The sequence comparison of these two ribosomal proteins from evolutionarily distant eucaryotes, such as man and yeast, indicates that the structure and probably the function of the phosphoprotein S6 of the small ribosomal subunit has been highly conserved. The expression of the S6 gene has been investigated in proliferating lymphocytes stimulated by concanavalin A. During all stages of lymphoblast development the level of S6 mRNA appeared to be similar. Southern blot analysis of human genomic DNA suggests that multiple genes exist for the S6 protein.  相似文献   

12.
A yeast ribosomal protein gene whose intron is in the 5' leader   总被引:13,自引:0,他引:13  
  相似文献   

13.
14.
15.
16.
We have isolated and characterized a Neurospora crassa gene homologous to the yeast CYH2 gene encoding L29, a cycloheximide sensitivity-conferring protein of the cytoplasmic ribosome. The cloned Neurospora gene was isolated by cross-hybridization to CYH2. It was sequenced from both cDNA and genomic clones. The coding region is interrupted by seven intervening sequences. Its deduced amino acid sequence shows 70% homology to that of yeast ribosomal protein L29 and 60% homology to that of mammalian ribosomal protein L27', suggesting that the protein has an important role in ribosomal function. The pattern of codon usage is highly biased, consistent with high translation efficiency. There is a single copy of this gene in N. crassa, and R. Metzenberg and coworkers have mapped its genetic location to the vicinity of the cyh-2 locus.  相似文献   

17.
We have studied translational control in the model of 48 h of fasting in the rat. Our initial observations showed a paradoxical increase in ribosomal protein S6 (rpS6) phosphorylation and a decrease in eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation. These effects, which would favor an increase in protein synthesis, could be attributed to increased circulating concentrations of branched-chain amino acids in fasting. To determine what mechanisms might account for decreased hepatic translation in fasting, we examined the cap binding complex. eIF4E-bound 4E-BP1 did not increase. However, eIF4E-bound eIF4G and total cellular eIF4G were profoundly decreased in fasted liver. eIF4G mRNA levels were not lower after fasting. Based on the hypothesis that decreased eIF4G translation might account for the reduced eIF4G content, we fractionated ribosomes by sucrose density centrifugation. Immunoblotting for rpS6 showed modest polysomal disaggregation upon fasting. PCR analysis of polysome profiles revealed that a spectrum of mRNAs undergo different translational regulation in the fasted state. In particular, eIF4G was minimally affected by fasting. This indicated that reduced eIF4G abundance in fasting may be a function of its stability, whereas its recovery upon refeeding is necessarily independent of its own involvement in the cap binding complex. Western immunoblotting of polysome fractions showed that phosphorylated rpS6 was disproportionately present in translating polysomes in fed and fasted animals, consistent with a role in translational control. However, the translation of rpS8, an mRNA with a 5'-oligopyrimidine tract, did not coincide with rpS6 phosphorylation, thus dissociating rpS6 phosphorylation from the translational control of this subset of mRNAs.  相似文献   

18.
p27(BBP/eIF6) is an evolutionarily conserved protein that was originally identified as p27(BBP), an interactor of the cytoplasmic domain of integrin beta4 and, independently, as the putative translation initiation factor eIF6. To establish the in vivo function of p27(BBP/eIF6), its topographical distribution was investigated in mammalian cells and the effects of disrupting the corresponding gene was studied in the budding yeast, Saccharomyces cerevisiae. In epithelial cells containing beta4 integrin, p27(BBP/eIF6) is present in the cytoplasm and enriched at hemidesmosomes with a pattern similar to that of beta4 integrin. Surprisingly, in the absence and in the presence of the beta4 integrin subunit, p27(BBP/eIF6) is in the nucleolus and associated with the nuclear matrix. Deletion of the IIH S. cerevisiae gene, encoding the yeast p27(BBP/eIF6) homologue, is lethal, and depletion of the corresponding gene product is associated with a dramatic decrease of the level of free ribosomal 60S subunit. Furthermore, human p27(BBP/eIF6) can rescue the lethal effect of the iihDelta yeast mutation. The data obtained in vivo suggest an evolutionarily conserved function of p27(BBP/eIF6) in ribosome biogenesis or assembly rather than in translation. A further function related to the beta4 integrin subunit may have evolved specifically in higher eukaryotic cells.  相似文献   

19.
The amino acid sequence of the rat 40S ribosomal subunit protein S25 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein S25 has 125 amino acids and has a molecular weight of 13,733. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 19 to 22 copies of the S25 gene. The mRNA for the protein is about 550 nucleotides in length. Rat S25 is homologous to ribosomal proteins from other eukaryotes (human and yeast).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号