首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mini-chromosome maintenance (MCM) proteins were originally identified in yeast, and homologues have been identified in several other eukaryotic organisms, including mammals. These findings suggest that the mechanisms by which eukaryotic cells initiate and regulate DNA replication have been conserved throughout evolution. However, it is clear that many mammalian origins are much more complex than those of yeast. An example is the Chinese hamster dihydrofolate reductase (DHFR) origin, which resides in the spacer between the DHFR and 2BE2121 genes. This origin consists of a broad zone of potential sites scattered throughout the 55-kb spacer, with several subregions (e.g. ori-beta, ori-beta', and ori-gamma) being preferred. We show here that antibodies to human MCMs 2-7 recognize counterparts in extracts prepared from hamster cells; furthermore, co-immunoprecipitation data demonstrate the presence of an MCM2-3-5 subcomplex as observed in other species. To determine whether MCM proteins play a role in initiation and/or elongation in Chinese hamster cells, we have examined in vivo protein-DNA interactions between the MCMs and chromatin in the DHFR locus using a chromatin immunoprecipitation (ChIP) approach. In synchronized cultures, MCM complexes associate preferentially with DNA in the intergenic initiation zone early in S-phase during the time that replication initiates. However, significant amounts of MCMs were also detected over the two genes, in agreement with recent observations that the MCM complex co-purifies with RNA polymerase II. As cells progress through S-phase, the MCMs redistribute throughout the DHFR domain, suggesting a dynamic interaction with DNA. In asynchronous cultures, in which replication forks should be found at any position in the genome, MCM proteins were distributed relatively evenly throughout the DHFR locus. Altogether, these data are consistent with studies in yeast showing that MCM subunits localize to origins during initiation and then migrate outward with the replication forks. This constitutes the first evidence that mammalian MCM complexes perform a critical role during the initiation and elongation phases of replication at the DHFR origin in hamster cells.  相似文献   

2.
The neutral/neutral and neutral/alkaline two-dimensional gel electrophoretic techniques are sensitive physical mapping methods that have been used successfully to identify replication initiation sites in genomes of widely varying complexity. We present detailed methodology for the preparation of replication intermediates from mammalian cells and their analysis by both neutral/neutral and neutral/alkaline two-dimensional gel approaches. The methods described allow characterization of the replication pattern of single-copy loci, even in mammalian cells. When applied to metazoans, initiation is found to occur at multiple sites scattered throughout zones that can be as long as 50 kb, with some subregions being preferred. Although these observations do not rule out the possibility of genetically defined replicators, they offer the alternative or additional possibility that chromosomal context may play an important role in defining replication initiation sites in complex genomes. We discuss novel recombination strategies that can be used to test for the presence of sequence elements critical for origin function if the origin lies in the vicinity of a selectable gene. Application of this strategy to the DHFR locus shows that loss of sequences more than 25 kb from the local initiation zone can markedly affect origin activity in the zone.  相似文献   

3.
We recently showed that replication initiates in the early S period at two closely spaced zones in the 240-kilobase (kb) dihydrofolate reductase (DHFR) amplicon of the methotrexate-resistant Chinese hamster ovary cell line CHOC 400. Both of these initiation loci (ori-beta and ori-gamma) have previously been cloned in a recombinant cosmid. In this study, we identified a third early-firing initiation locus (ori-alpha) in the much larger DHFR amplicon of the independently isolated methotrexate-resistant Chinese hamster cell line DC3F-A3/4K (A3/4K). We describe the molecular cloning of this newly identified locus and demonstrate by chromosomal walking that ori-alpha lies approximately 240 kb upstream from ori-beta. Using overlapping cosmid clones for more than 450 kb of DNA sequence from this region of the DHFR domain, we have monitored the replication pattern of the amplicons in synchronized A3/4K cells. These studies suggest that ori-alpha, ori-beta, and ori-gamma are the only early-firing initiation sites in this 450-kb sequence. In addition, we have been able to roughly localize the termini between ori-alpha and ori-beta and between ori-alpha and the next origin in the 5' direction. Thus, we have now isolated the equivalent of three early-firing replicons (including their origins) from a well-characterized chromosomal domain. With these tools, it should be possible to determine those properties that are shared by the origins and termini of different replicons and which are therefore likely to be functionally significant.  相似文献   

4.
Mammalian replication origins appear paradoxical. While some studies conclude that initiation occurs bidirectionally from specific loci, others conclude that initiation occurs at many sites distributed throughout large DNA regions. To clarify this issue, the relative number of early replication bubbles was determined at 26 sites in a 110-kb locus containing the dihydrofolate reductase (DHFR)-encoding gene in CHO cells; 19 sites were located within an 11-kb sequence containing ori-β. The ratio of ~0.8-kb nascent DNA strands to nonreplicated DNA at each site was quantified by competitive PCR. Nascent DNA was defined either as DNA that was labeled by incorporation of bromodeoxyuridine in vivo or as RNA-primed DNA that was resistant to λ-exonuclease. Two primary initiation sites were identified within the 12-kb region, where two-dimensional gel electrophoresis previously detected a high frequency of replication bubbles. A sharp peak of nascent DNA occurred at the ori-β origin of bidirectional replication where initiation events were 12 times more frequent than at distal sequences. A second peak occurred 5 kb downstream at a previously unrecognized origin (ori-β′). Thus, the DHFR gene initiation zone contains at least three primary initiation sites (ori-β, ori-β′, and ori-γ), suggesting that initiation zones in mammals, like those in fission yeast, consist of multiple replication origins.  相似文献   

5.
In previous studies, we utilized a neutral/neutral two-dimensional (2-D) gel replicon mapping method to analyze the pattern of DNA synthesis in the amplified dihydrofolate reductase (DHFR) domain of CHOC 400 cells. Replication forks appeared to initiate at any of a large number of sites scattered throughout the 55 kb region lysing between the DHFR and 2BE2121 genes, and subsequently to move outward through the two genes. In the present study, we have analyzed this locus in detail by a complementary, neutral/alkaline 2-D gel technique that determines the direction in which replication forks move through a region of interest. In the early S period, forks are observed to travel in both directions through the intergenic region, but only outward through the DHFR gene. Surprisingly, however, replication forks also move in both directions through the 2BE2121 gene. Furthermore, in early S phase, small numbers of replication bubbles can be detected in the 2BE2121 gene on neutral/neutral 2-D gels. In contrast, replication bubbles have never been detected in the DHFR gene. Thus, replication initiates not only in the intergenic region, but also at a lower frequency in the 2BE2121 gene. We further show that only a small fraction of DHFR amplicons sustains an active initiation event, with the rest being replicated passively by forks from distant amplicons. These findings are discussed in light of other experimental approaches that suggest the presence of a much more narrowly circumscribed initiation zone within the intergenic region.  相似文献   

6.
To study initiation of DNA replication in mammalian chromosomes, we have established a methotrexate-resistant Chinese hamster ovary cell line (CHOC 400) that contains approximately 1,000 copies of the early replicating dihydrofolate reductase (DHFR) domain. We have previously shown that DNA replication in the prevalent 243-kilobase (kb) amplicon type in this cell line initiates somewhere within a 28-kb region located downstream from the DHFR gene. In an attempt to localize the origin of replication with more precision, we blocked the progress of replication forks emanating from origins at the beginning of the S phase by the introduction of trioxsalen cross-links at 1- to 5-kb intervals in the parental double-stranded DNA. The small DNA fragments synthesized under these conditions (which should be centered around replication origins) were then used as hybridization probes on digests of cosmids and plasmids from the DHFR domain. These studies suggested that in cells synchronized by this regimen, DNA replication initiates at two separate sites within the previously defined 28-kb replication initiation locus, in general agreement with results described in the accompanying paper (T.-H. Leu and J. L. Hamlin, Mol. Cell. Biol. 9:523-531, 1989). One of these sites contains a repeated DNA sequence element that is found at or near many other initiation sites in the genome, since it was also highly enriched in the early replicating DNA isolated from cross-linked CHO cells that contain only two copies of the DHFR domain.  相似文献   

7.
We have mapped an initiation region of DNA replication at a single-copy chromosomal locus in exponentially proliferating Drosophila tissue culture cells, using two-dimensional (2D) gel replicon mapping methods and PCR-mediated analysis of nascent strands. The initiation region was first localized downstream of the DNA polymerase alpha gene by determining direction of replication forks with the neutral/alkaline 2D gel method. Distribution of replication origins in the initiation region was further analyzed by using two types of 2D gel methods (neutral/neutral and neutral/alkaline) and PCR-mediated nascent-strand analysis. Results obtained by three independent methods were essentially consistent with each other and indicated that multiple replication origins are distributed in a broad zone of approximately 10 kb. The nucleotide sequence of an approximately 20-kb region that encompasses the initiation region was determined and searched for sequence elements potentially related to function of replication origins.  相似文献   

8.
9.
10.
The identification of metazoan origins of DNA replication has so far been hampered by the lack of a suitable genetic screening and by the cumbersomeness of the currently available mapping procedures. Here we describe the construction of a library of nascent DNA, representative of all cellular origin sequences, and its utilization as a screening probe for origin identification in large genomic regions. The procedure developed was successfully applied to the human 5q31.1 locus, encoding for the IL-3 and GM-CSF genes. Two novel origins were identified and subsequently characterized by competitive PCR mapping, located approximately 3.5 kb downstream of the GM-CSF gene. The two origins (GM-CSF Ori1 and Ori2) were shown to interact with different members of the DNA prereplication complex. This observation reinforces the universal paradigm that initiation of DNA replication takes place at, or in close proximity to, the binding sites of the trans-acting initiator proteins.  相似文献   

11.
Previous radiolabeling and two-dimensional (2-D) gel studies of the dihydrofolate reductase (DHFR) domain of Chinese hamster cells have suggested that replication can initiate at any one of a very large number of inefficient sites scattered throughout the 55-kb intergenic spacer region, with two broad subregions (ori-beta and ori-gamma) preferred. However, high-resolution analysis by a PCR-based nascent strand abundance assay of the 12-kb subregion encompassing ori-beta has suggested the presence of a relatively small number of fixed, highly efficient initiation sites distributed at infrequent intervals that correspond to genetic replicators. To attempt to reconcile these observations, two different approaches were taken in the present study. In the first, neutral-neutral 2-D gel analysis was used to examine replication intermediates in 31 adjacent and overlapping restriction fragments in the spacer, ranging in size from 1.0 to 18 kb. Thirty of 31 fragments displayed the complete bubble arcs characteristic of centered origins. Taking into account overlapping fragments, these data suggest a minimum of 14 individual start sites in the spacer. In the second approach, a quantitative early labeled fragment hybridization assay was performed in which radioactive origin-containing DNA 300 to 1,000 nucleotides in length was synthesized in the first few minutes of the S period and used to probe 15 clones distributed throughout the intergenic spacer but separated on average by more than 1,000 bp. This small nascent DNA fraction hybridized to 14 of the 15 clones, ranging from just above background to a maximum at the ori-beta locus. The only silent region detected was a small fragment lying just upstream from a centered matrix attachment region--the same region that was also negative for initiation by 2-D gel analysis. Results of both approaches suggest a minimum of approximately 20 initiation sites in the spacer (two of them being ori-beta and ori-gamma), with ori-beta accounting for a maximum of approximately 20% of initiations occurring in the spacer. We believe that the results of all experimental approaches applied to this locus so far can be fitted to a model in which the DHFR origin consists of a 55-kb intergenic zone of potential sites that are used with very different efficiencies and which are separated in many cases by a few kilobases or less.  相似文献   

12.
Two complementary two-dimensional gel electrophoretic techniques have recently been developed that allow initiation sites to be mapped with relative precision in eukaryotic genomes at least as complex as those of yeast and Drosophila melanogaster. We reported the first application of these mapping methods to a mammalian genome in a study on the amplified dihydrofolate reductase (DHFR) domain of the methotrexate-resistant CHO cell line CHOC 400 (J.P. Vaughn, P.A. Dijkwel, and J.L. Hamlin, Cell 61:1075-1087, 1990). Our results suggested that in this 240-kb domain, initiation of nascent DNA strands occurs at many sites within a 30- to 35-kb zone mapping immediately downstream from the DHFR gene. In the course of these studies, it was necessary to develop methods to stabilize replication intermediates against branch migration and shear. This report describes these stabilization methods in detail and presents a new enrichment protocol that extends the neutral/neutral two-dimensional gel mapping method to single-copy loci in mammalian cells. Preliminary analysis of replication intermediates purified from CHO cells by this method suggests that DNA synthesis may initiate at many sites within a broad zone in the single-copy DHFR locus as well.  相似文献   

13.
14.
Two-dimensional (2-D) gel analysis of replication intermediates in the Chinese hamster dihydrofolate reductase domain has suggested that nascent chains can initiate at any of a large number of sites scattered throughout a ~50 kb “initiation locus” (although the level of initiation detected at any given site within this region was relatively low). This result contrasts markedly with data from anin vitro strand switching assay suggesting that >80% of initiations occur within a single 500 bp fragment lying within the initiation locus. In an effort to reconcile these two disparate views of the initiation reaction, we have questioned the validity of our 2-D gel data in several ways. We show here that: 1) the number of replication bubbles detected in the DHFR locus in the early S period is markedly increased when the cells are released from a synchronizing agent that inhibits initiationper se, rather than from aphidicolin, which is a chain elongation inhibitor; 2) initiation in the DHFR domain occurs only during the first 90 min of the S period, as would be expected of an early-firing origin; 3) a pulse of3H-thymidine moves through the structures observed on 2-D gels with the kinetics expected ofbonafide replication intermediates; and 4) preparations of replication intermediates that are subsequently analyzed on 2-D gels appear, by electron microscopy, to represent the typical theta structures and single-forked molecules expected of bidirectional origins of replication; no unusual structures (e.g., microbubbles) were seen.  相似文献   

15.
A general method for determining the physical location of an origin of bidirectional DNA replication has been developed recently and shown to be capable of correctly identifying the simian virus 40 origin of replication (L. Vassilev and E. M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989). The advantage of this method over others previously reported is that it avoids the use of metabolic inhibitors, the requirement for cell synchronization, and the need for multiple copies of the origin sequence. Application of this method to exponentially growing Chinese hamster ovary cells containing the nonamplified, single-copy dihydrofolate reductase gene locus revealed that DNA replication begins bidirectionally in an initiation zone approximately 2.5 kilobases long centered about 17 kilobases downstream of the DHFR gene, coinciding with previously described early replicating sequences. These results demonstrate the utility of this mapping protocol for identifying cellular origins of replication and suggest that the same cellular origin is used in both the normal and the amplified DHFR locus.  相似文献   

16.
Previous two-dimensional gel replicon-mapping studies on the amplified dihydrofolate reductase (DHFR) domain in CHOC 400 cells suggested that replication can initiate at any of a large number of sites scattered throughout a 55-kb region lying between two convergently transcribed genes. It could be argued that this unusual distributive initiation mode is unique to amplified chromosomal loci. In this paper, we report the first application of the two-dimensional gel techniques to the analysis of a single-copy locus in mammalian cells. Results obtained with both synchronized and exponentially growing CHO cells suggest that (i) initiation can also occur at any of a large number of sites distributed throughout the intergenic region in the nonamplified DHFR locus, (ii) initiation is confined to the first 2 to 2.5 h of the S period, and (iii) initiation occurs only in a fraction of the DHFR loci in each cell cycle.  相似文献   

17.
The Chinese hamster dihydrofolate reductase (DHFR) origin of replication consists of a broad zone of potential initiation sites scattered throughout a 55-kb intergenic spacer, with at least three sites being preferred (ori-beta, ori-beta', and ori-gamma). We previously showed that deletion of the most active site or region (ori-beta) has no demonstrable effect on initiation in the remainder of the intergenic spacer nor on the time of replication of the DHFR locus as a whole. In the present study, we have now deleted ori-beta', both ori-beta and ori-beta', an 11-kb region just downstream from the DHFR gene, or the central approximately 40-kb core of the spacer. The latter two deletions together encompass >95% of the initiation sites that are normally used in this locus. Two-dimensional gel analysis shows that initiation still occurs in the early S phase in the remainder of the intergenic spacer in each of these deletion variants. Even removal of the 40-kb core fails to elicit a significant effect on the time of replication of the DHFR locus in the S period; indeed, in the truncated spacer that remains, the efficiency of initiation actually appears to increase relative to the corresponding region in the wild-type locus. Thus, if replicators control the positions of nascent strand start sites in this complex origin, either (i) there must be a very large number of redundant elements in the spacer, each of which regulates initiation only in its immediate environment, or (ii) they must lie outside the central core in which the vast majority of nascent strand starts occur.  相似文献   

18.
The nature of replication origins in eukaryotic chromosomes has been examined in some detail only in yeast, Drosophila, and mammalian cells. We have used highly synchronous cultures of plasmodia of the myxomycete Physarum and two-dimensional agarose gel electrophoresis to examine replication of two developmentally controlled, early replicated genes over time in S-phase. A single, discrete origin of replication was found within 4.8 kb of the LAV1-5 gene, which encodes a homolog of profilin. In contrast, the LAV1-2 gene appears to be surrounded by several origins. Two origins were identified within a 15 kb chromosomal domain and appear to be inefficiently used. Replication forks collide at preferred sites within this domain. These terminating structures are long lived, persisting for at least 2 h of the 3 h S-phase. Analysis of restriction fragment length polymorphisms (RFLPs) within the LAV1-2 domain indicates that replication of alleles on different parental chromosomes is a highly coordinated process. Our studies of the these two early replicated, plasmodium-specific genes indicate that both a fixed, narrow origin region and a broader zone containing two closely spaced origins of DNA replication occur in Physarum.  相似文献   

19.
20.
Mechanistically, an origin of bidirectional DNA replication (OBR) can be defined by the transition from discontinuous to continuous DNA synthesis that must occur on each template strand at the site where replication forks originate. This results from synthesis of Okazaki fragments predominantly on the retrograde arms of forks. We have identified these transitions at a specific site within a 0.45 kb sequence approximately 17 kb downstream from the 3' end of the dihydrofolate reductase gene in Chinese hamster ovary chromosomes. At least 80% of the replication forks in a 27 kb region emanated from this OBR. Thus, initiation of DNA replication in mammalian chromosomes uses the same replication fork mechanism previously described in a variety of prokaryotic and eukaryotic genomes, suggesting that mammalian chromosomes also utilize specific cis-acting sequences as origins of DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号