首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the present study we report a novel histochemical method which, by sequential pre-incubations in alkaline and acidic media, selectively differentiates muscle fibres expressing myosin heavy chain IIX, on the basis of a specific profile for myofibrillar actomyosin ATPase (mATPase) activity. The enzyme reactions were tested for specificity by means of anti-myosin heavy chain monoclonal antibodies, which were characterized on Western blots of muscle homogenates. Enzyme histochemical reactions with the traditional pH buffers were compared to those of the new method and, in conjunction with the immunoreactions, used to confirm the relationship between MyHC expression and the distinct profiles for mATPase. Imrnunohistochemical reactions demonstrated that the new method only differentiates those fibres expressing myosin heavy chain IIX. The method revealed a continuum in which the intermediate staining intensities corresponded to hybrid fibres expressing myosin heavy chain IIX in combination with either the IIA or IIB forms. Quantitative histochemistry and immunohistochemistry (by image analysis), used to examine the relationship between staining intensities for mATPase and amounts of myosin heavy chain IIX expression, revealed that the new method discriminates well between hybrid fibres expressing variable amounts of the IIX isoform (r2 = 0.93).  相似文献   

2.
Skeletal muscle fibres in mammalian limb muscles are of four types: slow, 2A, 2X, and 2B, each characterized by a distinct myosin heavy chain (MyHC) isoform. Existing monoclonal antibodies (mabs) against fast MyHCs lack fibre-type specificity across species and could not positively identify 2X fibres. In this work, mabs were raised against each of the fast MyHCs. These mabs were shown to be monospecific by Western blots and immunohistochemistry in the rat. The advantages of using these mabs for identifying the three fast fibre types and hybrid fibres expressing multiple isoforms were illustrated using rat tibialis anterior muscle. Immunohistochemical analyses confirmed the monospecificity of these mabs in the following additional species: mouse, guinea pig, rabbit, cat, and baboon. 2B fibres were absent in limb muscles of the cat and baboon. These mabs constitute a set of powerful tools for studying muscle fibre types and their transformations.  相似文献   

3.
The classification of muscle fibres is of particular interest for the study of the skeletal muscle properties in a wide range of scientific fields, especially animal phenotyping. It is therefore important to define a reliable method for classifying fibre types. The aim of this study was to establish a simplified method for the immunohistochemical classification of fibres in mouse. To carry it out, we first tested a combination of several anti myosin heavy chain (MyHC) antibodies in order to choose a minimum number of antibodies to implement a semi-automatic classification. Then, we compared the classification of fibres to the MyHC electrophoretic pattern on the same samples. Only two anti MyHC antibodies on serial sections with the fluorescent labeling of the Laminin were necessary to classify properly fibre types in Tibialis Anterior and Soleus mouse muscles in normal physiological conditions. This classification was virtually identical to the classification realized by the electrophoretic separation of MyHC. This immuno-histochemical classification can be applied to the total area of Tibialis Anterior and Soleus mouse muscles. Thus, we provide here a useful, simple and time-efficient method for immunohistochemical classification of fibres, applicable for research in mouse.Key words: skeletal muscle, mouse, myosin heavy chain, immunohistochemistry, electrophoresis, image analysis  相似文献   

4.
Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

5.
Summary Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

6.
The catabolic action of glucocorticoids on the molecular level of the two main muscular proteins, myosin and actin, was found to depend on the type of muscle fibres. The synthesis rate of actin and myosin heavy chain was decreased in all types of muscle fibres, and in myosin light chain only in the slow-twitch red fibres. The turnover rate of actin and myosin heavy chain was also found decreased in all types of muscle fibres. The myosin light chains turned over more rapidly in dexamethasone-treated than in the control rats in all types of muscle fibres except in the case of the slow-twitch red ones as was shown by single and double isotope methods. Dexamethasone treatment enhanced the urinary 3-methylhistidine excretion in rats by 60%.  相似文献   

7.
Electrophoresis, immunoblots, immunohistochemistry and image analysis methods were applied to characterise canine trunk and appendicular muscle fibres according to their myosin heavy chain (MyHC) composition and to determine, on a fibre-to-fibre basis, the correlation between contractile [MyHC (s), myofibrillar ATPase (mATPase) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) isoforms], metabolic [succinate dehydrogenase (SDH) and glycerol-3-phosphate dehydrogenase (GPDH) activities and glycogen and phospholamban (PLB) content] and morphological (cross-sectional area and capillary and nuclear densities) features of individual myofibres. An accurate delineation of MyHC-based fibre types was obtained with the developed immunohistochemical method, which showed high sensitivity and objectivity to delineate hybrid fibres with overwhelming dominance of one MyHC isoform. Phenotypic differences in contractile, metabolic and morphological properties seen between fibre types were related to MyHC content. All canine skeletal muscle fibre types had a relatively high histochemical SDH activity but significant differences existed in the order IIA>I>IIX. Mean GPDH was ranked according to fibre type such that I<IIA<IIX. Type IIA fibres were the smallest, type IIX fibres the largest and type I of intermediate size. Capillary and nuclear density decreased in the order IIA>I>IIX. Hybrid fibres, which represented nearly one third of the whole pool of skeletal muscle fibres analysed, had mean values intermediate between their respective pure phenotypes. Slow fibres expressed the slow SERCA isoform and PLB, whereas type II fibres expressed the fast SERCA isoform. Discrimination of myofibres according to their MyHC content was possible on the basis of their contractile, metabolic and morphological features. These intrafibre interrelationships suggest that myofibres of control dogs exhibit a high degree of co-ordination in their physiological, biochemical and morphological characteristics. This study demonstrates that canine skeletal muscle fibres have been misclassified in numerous previous studies and offers useful baseline data and new prospects for future work on muscle-fibre-typing in canine experimental studies.  相似文献   

8.
The distribution of fibre types in the tibialis anterior (TA) muscle of adult mice was examined by means of an immunohistochemical approach, using monoclonal antibodies that recognize different myosin heavy chain isoforms. As has been reported previously, the superficial portion of TA contains almost exclusively type IIB fibres and is almost entirely glycolytic in nature. Following section of the lateral popliteal nerve and rotation of the proximal stump to prevent rematching, it was found that the original pattern was virtually restored within 2 months. One possible explanation for this observation is that the activity pattern of peripheral and deep muscle fibres differs and that this aids in specification of muscle fibre type. Alternatively, the muscle fibres of the superficial portion of TA may be inherently resistant to an alteration of their phenotype with regard to expression of myosin heavy chain.  相似文献   

9.
Combined methodologies of immunohistochemistry, histochemistry and photometric image analysis were applied: (1) to characterise control equine skeletal muscle fibres according to their myosin heavy chain (MyHC) composition and (2) to determine on a fibre-to-fibre basis the correlation between contractile [i.e. MyHC(s), myofibrillar ATPase (mATPase) and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoforms], metabolic [i.e. succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) activities, glycogen and phospholamban (PLB) contents], and morphological [i.e. cross-sectional area (CSA), capillary and nuclear densities] features of individual myofibres. An accurate delineation of MyHC-based fibre types was obtained with the immunohistochemical method developed. This protocol showed a high sensitivity and objectivity to delineate hybrid fibres with overwhelming dominance of one MyHC isoform and, furthermore, it allowed a semiquantitative delineation of fast hybrid fibres according to the predominant MyHC isoform expressed. The phenotypic differences in contractile, metabolic and morphological properties seen between fibre types were related to MyHC content. Slow fibres had the lowest mATPase activity (related to shortening velocity), the highest SDH activity (oxidative capacity), the lowest GPD activity (glycolytic metabolism) and glycogen content, the smallest CSA, the greatest capillary and nuclear densities, and expressed slow SERCA isoform and PLB, but not the fast SERCA isoform. The reverse pattern was true for pure IID/X fibres, and type IIA fibres had intermediate properties. Hybrid IIAD/X fibres had mean values intermediate to those of their respective pure phenotypes. Discrimination of fibres according to their MyHC content was possible on the basis of their contractile and non-contractile profiles. These intrafibre interdependencies suggest that, even when controlled by different mechanisms, myofibres of control horses exhibit a high degree of co-ordination in their physiological, biochemical and anatomical features.  相似文献   

10.
1. Combined histochemical and biochemical single-fibre analyses [Staron & Pette (1987) Biochem. J. 243, 687-693], were used to investigate the rabbit tibialis-anterior fibre population. 2. This muscle is composed of four histochemically defined fibre types (I, IIC, IIA and IIB). 3. Type I fibres contain slow myosin light chains LC1s and LC2 and the slow myosin heavy chain HCI, and types IIA and IIB contain the fast myosin light chains LC1f, LC2f and LC3f and the fast heavy chains HCIIa and HCIIb respectively. 4. A small fraction of fibres (IIAB), histochemically intermediate between types IIA and IIB, contain the fast light myosin chains but display a coexistence of HCIIa and HCIIb. 5. Similarly to the soleus muscle, C fibres in the tibialis anterior muscle contain both fast and slow myosin light chains and heavy chains. The IIC fibres show a predominance of the fast forms and the IC fibres (histochemically intermediate between types I and IIC) a predominance of the slow forms. 6. A total of 60 theoretical isomyosins can be derived from these findings on the distribution of fast and slow myosin light and heavy chains in the fibres of rabbit tibialis anterior muscle.  相似文献   

11.
Abstract. Organotypic nerve-muscle cultures were prepared from foetal mouse spinal cord and adult mouse muscle fibres. In this system, the adult fibres degenerate and new myotubes form. The regenerated muscle fibres become innervated, develop cross-striations, and survive for several months. We have investigated the isozymes of myosin present in these muscle fibres using histochemistry and immunocytochemistry with antibodies to rat embryonic, neonatal, and adult fast myosins. We demonstrate that some of the regenerated fibres contain adult fast but not embryonic or neonatal myosin. This is the first demonstration of the production of adult myosin heavy chain in tissue culture. This system therefore offers the possibility for further study of the development of adult myosin isoforms in vitro.  相似文献   

12.
Organotypic nerve-muscle cultures were prepared from foetal mouse spinal cord and adult mouse muscle fibres. In this system, the adult fibres degenerate and new myotubes form. The regenerated muscle fibres become innervated, develop cross-striations, and survive for several months. We have investigated the isozymes of myosin present in these muscle fibres using histochemistry and immunocytochemistry with antibodies to rat embryonic, neonatal, and adult fast myosins. We demonstrate that some of the regenerated fibres contain adult fast but not embryonic or neonatal myosin. This is the first demonstration of the production of adult myosin heavy chain in tissue culture. This system therefore offers the possibility for further study of the development of adult myosin isoforms in vitro.  相似文献   

13.
In the present study we have investigated the reactivity of rat muscle to a specific monoclonal antibody directed against alpha cardiac myosin heavy chain. Serial cross sections of rat hindlimb muscles from the 17th day in utero to adulthood, and after neonatal denervation and de-efferentation, were studied by light microscope immunohistochemistry. Staining with anti-alpha myosin heavy chain was restricted to intrafusal bag fibres in all specimens studied. Nuclear bag2 fibres were moderately to strongly stained in the intracapsular portion and gradually lost their reactivity towards the ends, whereas nuclear bag1 fibres were stained for a short distance in each pole. Nuclear bag2 fibres displayed reactivity to anti-alpha myosin heavy chain from the 21st day of gestation, whereas nuclear bag1 fibres only acquired reactivity to anti-alpha myosin heavy chain three days after birth. After neonatal de-efferentation, the reactivity of nuclear bag2 fibres to anti-alpha myosin heavy chain was decreased and limited to a shorter portion of the fibre, whereas nuclear bag1 fibres were unreactive. We showed that a myosin heavy chain isoform hitherto unknown for skeletal muscle is specifically expressed in rat nuclear bag fibres. These findings add further complexity to the intricate pattern of isomyosin expression in intrafusal fibres. Furthermore, we show that motor innervation influences the expression of this isomyosin along the length of the fibres.  相似文献   

14.
The aim of the present study was to precise the origin of the particular muscle characteristics of double-muscled cattle by comparing muscle properties of Holstein and double-muscled Belgian Blue (BB) foetuses. Ten 100-day-old foetuses of each genotype were studied. The weight and length of foetuses and the length, weight and area of the Semitendinosus (ST) muscle were analysed. Contractile differentiation of the different fibre types was studied by immunohistochemistry using several monoclonal antibodies raised against different myosin heavy chain isoforms (MHC slow, fast, foetal) and by electrophoresis. Proliferation phase of myoblasts from each genotype was analysed in primary culture. On 100 days of foetal life, the foetuses of both genotypes did not show any significant differences in their weight and length. However, BB cattle already present muscle hypertrophy, which seems to originate from a higher myoblast proliferation observed in primary culture. The use of anti-MHC antibodies shows that ST muscle of BB contained a smaller proportion of primary fibres and a higher proportion of secondary fibres which will give principally fast fibres in adult muscle. Electrophoresis analysis confirms a lower proportion of slow MHC in ST of BB.  相似文献   

15.
 Myofibrillar ATPase (mATPase), succinate dehydrogenase (SDH) and α-glycerophosphate dehydrogenase (GPD) activities and cross-sectional area (CSA) were measured in fibres of rat medial gastrocnemius muscle using quantitative histochemistry. The same fibres were typed immunohistochemically using monoclonal antibodies specific to selected myosin heavy chain (MHC) isoforms. The values of mATPase, SDH, GPD and CSA formed a continuum, but significant differences in mean values were observed among fibre types of presumed homogeneous MHC content. Type I fibres had the lowest mATPase activity, followed in rank order by type IIA<type IID/X<type IIB. Type IIA fibres had the highest SDH activity, followed in rank order by type IID/X>type I>type IIB. The mean GPD activity was consistently ranked according to fibre type such that type IIB>type IID/X >type IIA>type I. Type IIA fibres were the smallest, type IIB fibres were the largest and types I and IID/X were of intermediate size. Significant interrelationships between mATPase, SDH, GPD and CSA values were found on a fibre-to-fibre basis. Consequently, discrimination of fibres according to their MHC content was possible on the basis of their mATPase, SDH, GPD and CSA profiles. These intrafibre interrelationships suggest that the MHC isoform is associated with phenotypic differences in contractile, metabolic and size properties of muscle fibre types. Accepted: 30 November 1998  相似文献   

16.
Electrophoretic analysis in the presence of 33% glycerol of purified myosin from normal human muscle shows three distinct protein bands which are identified as type 1, 2B, and 2A myosin heavy chain (MHC) isoforms by affinity-purified polyclonal antibodies. Analysis of MHC of single human muscle fibres shows that human muscles contain a large population of fibres showing the coexistence of type 2A and 2B MHC.  相似文献   

17.
Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide ''maps'' published in Cleveland. Fischer, Kirschner & Laemmli [(1977) J. Biol. Chem. 252, 1102-1106], allowed a classification of muscle fibres into four classes, corresponding to histochemical types I, IIA, IIB and IIC. Type I fibres with a pure slow-twitch-type of myosin were found to be characterized by a unique set of isoforms of troponins I, C and T, in agreement with the immunological data of Dhoot & Perry [(1979) Nature (London) 278, 714-718], by predominance of the beta-tropomyosin subunit and by the presence of a small amount of an additional tropomyosin subunit, apparently dissimilar from fast-twitch-fibre alpha-tropomyosin subunit. The myofibrillar composition of type IIB fast-twitch white fibres was the mirror image of that found for slow-twitch fibres in that the fast-twitch-fibre isoforms only of the troponin subunits were present and the alpha-tropomyosin subunit predominated. Type IIA fast-twitch red fibres showed a troponin subunit composition identical with that of type IIB fast-twitch white fibres. On the other hand, a unique type of myosin heavy chains was found to be associated with type IIA fibres. Furthermore, the myosin light-chain composition of these fibres was invariably characterized by a small amount of LC3F light chain and by a pattern that was either a pure fast-twitch-fibre light-chain pattern or a hybrid LC1F/LC2F/LC3F/LC1Sb light-chain pattern. By these criteria type IIA fibres could be distinguished from type IIC intermediate fibres, which showed coexistence of fast-twitch-fibre and slow-twitch-fibre forms of myosin light chains and of troponin subunits.  相似文献   

18.
A number of single fibres were isolated by dissection of four bovine masseter (ma) muscles, three rectus abdominis (ra) muscles and eight sternomandibularis (sm) muscles. By histochemical criteria these muscles contain respectively, solely slow fibres (often called type I), predominantly fast fibres (type II), and a mixture of fast and slow. The fibres were analysed by conventional sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the gels stained with Coomassie Blue. Irrespective of the muscle, every fibre could be classed into one of two broad groups based on the mobility of proteins in the range 135000-170000 daltons. When zones containing myosin heavy chain were cut from the single-fibre gel tracks and 'mapped' [Cleveland, Fischer, Kirschner & Laemmli (1977) J. Biol. Chem. 252, 1102-1106] with Staphylococcus proteinase, it was found that one group always contained fast myosin heavy chain, whereas the second group always contained the slow form. Moreover, a relatively fast-migrating alpha-tropomyosin was associated with the fast myosin group and a slow-migrating form with the slow myosin group. All fibres also contained beta-tropomyosin; the coexistence of alpha- and beta-tropomyosin is at variance with evidence that alpha-tropomyosin is restricted to fast fibres [Dhoot & Perry (1979) Nature (London) 278, 714-718]. Fast fibres containing the expected fast light chains and troponins I and C fast were identified in the three ra muscles, but in only four sm muscles. In three other sm muscles, all the fast fibres contained two troponins I and an additional myosin light chain that was more typical of myosin light chain 1 slow. The remaining sm muscle contained a fast fibre type that was similar to the first type, except that its myosin light chain 1 was more typical of the slow polymorph. Troponin T was bimorphic in all fast fibres from a ra muscles and in at least some fast fibres from one sm muscle. Peptide 'mapping' revealed two forms of fast myosin heavy chain distributed among fast fibres. Each form was associated with certain other proteins. Slow myosin heavy chain was unvarying in three slow fibre types identified. Troponin I polymorphs were the principal indicator of slow fibre types. The myofibrillar polymorphs identified presumably contribute to contraction properties, but beyond cud chewing involving ma muscle, nothing is known of the conditions that gave rise to the variable fibre composites in sm and ra muscles.  相似文献   

19.
off actile differentiation was studied in six foetal muscles exhibiting different contractile characteristics in adult cattle: the Masseter, Diaphragma, Biceps femoris, Longissimus thoracis, Semitendinosus and Cutaneus trunci. These muscles were excised from foetuses aged 60-260 days. Fibre types were identified by immunohistochemistry using three monoclonal antibodies raised against types 1, 2a, 2b (or 2x) and foetal myosin heavy chains. The different myosin isoforms were also separated by electrophoresis, identified by immunoblotting and quantified by ELISA. At least two generations of cells were observed in all the muscles studied. The primary, early differentiated one, gave rise to type II fibres in Cutaneus trunci and type I fibres in all remaining muscles. The secondary generation of cells differentiated later than the first generation of cells. Its pattern of differentiation was more complex in particular from 150 to 210 days. It formed slow fibres in slow adult muscles, fast fibres in fast adult muscles and both types in mixed muscles. Precocity of differentiation was muscle-type dependent and related to muscle function at birth.  相似文献   

20.
The fibre type composition of the striated muscle layer of the oesophagus of the cow, sheep, donkey, dog and cat was examined with standard histochemical methods and immunohistochemical staining using type-specific antimyosin sera. The heavy chain and light chain composition of oesophageal myosin was also examined using electrophoretic peptide mapping and 2-dimensional gel electrophoresis respectively. In the ruminants and donkey the oesophagus was composed of fibre types I, IIA and IIC with immunohistochemical characteristics identical to those of the same fibre types found in control skeletal muscle. In the ruminants there was a gradient in the proportion of type I fibres from 1% (at the cervical end) to about 30% (at the caudal end). In the carnivores the oesophageal muscle was composed of a very small percentage of type I and IIC fibres, but the predominant type was very different histochemically and immunohistochemically from all the fibre types (I, IIA, IIB, IIC) present in the control muscles. This oesophageal fibre type ( IIoes ) had an acid- and alkaline-stable m-ATPase activity, a moderate histochemical Ca-Mg actomyosin ATPase activity, and reacted weakly with anti-IIA and anti-IIB myosin sera. Although the light chains of the IIoes myosin were the same as the light chains of a mixture of IIA and IIB myosins, their respective heavy chains gave different peptide maps. Greater differences were obtained between the heavy chains of IIoes and other striated muscle myosins. These observations lead us to conclude that this predominant fibre type of the carnivore oesophageal striated muscle is of the 'fast' type, and contains a distinct isoform of myosin similar but not identical to the other fast type myosins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号