首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Small low-density lipoprotein (LDL) particles are a genetically influenced coronary disease risk factor. Lipoprotein lipase (LpL) is a rate-limiting enzyme in the formation of LDL particles. The current study examined genetic linkage of LDL particle size to the LpL gene in five families with structural mutations in the LpL gene. LDL particle size was smaller among the heterozygous subjects, compared with controls. Among heterozygous subjects, 44% were classified as affected by LDL subclass phenotype B, compared with 8% of normal family members. Plasma triglyceride levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in heterozygous subjects, compared with normal subjects, after age and sex adjustment. A highly significant LOD score of 6.24 at straight theta=0 was obtained for linkage of LDL particle size to the LpL gene, after adjustment of LDL particle size for within-genotype variance resulting from triglyceride and HDL-C. Failure to adjust for this variance led to only a modest positive LOD score of 1.54 at straight theta=0. Classifying small LDL particles as a qualitative trait (LDL subclass phenotype B) provided only suggestive evidence for linkage to the LpL gene (LOD=1. 65 at straight theta=0). Thus, use of the quantitative trait adjusted for within-genotype variance, resulting from physiologic covariates, was crucial for detection of significant evidence of linkage in this study. These results indicate that heterozygous LpL deficiency may be one cause of small LDL particles and may provide a potential mechanism for the increase in coronary disease seen in heterozygous LpL deficiency. This study also demonstrates a successful strategy of genotypic specific adjustment of complex traits in mapping a quantitative trait locus.  相似文献   

3.
Using an automated fluorescent single-strand conformation polymorphism (SSCP) analysis of the entire coding region, promoter zone, and exon-intron junctions of the low-density lipoprotein (LDL) receptor gene, we examined 80 DNA samples of patients with familial hypercholesterolemia (FH) from Petrozavodsk. We revealed mutations that might cause FH in five probands, including FH-North Karelia (c.925-931del7) mutation and four previously unknown mutations. These novel mutations included a transversion c.618T>G (p.S206R), one nucleotide insertion c.195_196insT (p.FsV66:D129X), a complex gene rearrangement c.192del10/ins8 (p.FsS65:D129X), and a single nucleotide deletion c.2191delG (p.FsV731:V736X). Three out of four novel mutations produce an open reading frame shift and the premature termination of translation. An analysis of the cDNA sequence of the LDL receptor showed that this might result in the formation of a transmembrane-domain-deficient receptor that is unable to bind and internalize the ligand. Our results suggest the absence of a strong founder effect associated with FH in the Petrozavodsk population.  相似文献   

4.
Serum and biliary lipid metabolism were examined in 13 patients with different types of hyperlipoproteinemia before and after 4 weeks of treatment with either bezafibrate or fenofibrate. In patients with heterozygous familial hypercholesterolemia (FH), bezafibrate (n = 5) and fenofibrate (n = 7) produced a similar significant reduction of total cholesterol, LDL-cholesterol, and triglycerides by 21, 23, and 32%, respectively. In patients with familial combined hyperlipidemia (CHL), only triglycerides decreased markedly. Biliary lipid secretion rates in patients with heterozygous FH were not different from those of young male volunteers, indicating that a reduction of hepatic LDL receptors did not affect hepatic elimination of cholesterol or bile acids. Biliary cholesterol secretion increased significantly from 57 to 75 mg/hr during bezafibrate therapy (n = 8) and from 62 to 71 mg/hr during fenofibrate therapy (n = 9). No consistent change in bile acid or phospholipid secretion was observed. The elevated output of biliary cholesterol increased cholesterol saturation significantly from 147 to 185% and from 152 to 173% during administration of bezafibrate and fenofibrate, respectively. The present study indicates that treatment with bezafibrate or fenofibrate is effective in lowering LDL cholesterol in patients with heterozygous FH, but both drugs increase cholesterol saturation of bile, which might enhance the risk of cholesterol gallstone formation.  相似文献   

5.
Familial Hypercholesterolemia (FH) is a genetic disorder characterized by high low-density lipoprotein cholesterol (LDL-C) concentrations that frequently gives rise to premature coronary artery disease. The clinical expression of FH is highly variable, even in patients carrying the same LDL receptor gene mutation. This variability may be due to environmental and other genetic factors. We investigated the effect of APOCIII T1100C, FV Gln506Arg, ADRB2 Glu27Gln, SELE Ser128Arg, SELE Leu554Phe, and ENaCa Ala663Thr polymorphisms on the HDL-C variations in 84 patients with FH. For ApoCIII T1100C, subjects with the TT genotype presented higher HDL-C levels than the other genotype groups (p = 0.046). Similarly the presence of the Gln allele in ADRB2 27 Glu/Gln heterozygotes and ADRB2 27 Gln/Gln homozygotes was associated with higher HDL-C levels (p = 0.014). Among the other polymorphisms tested, none of them were associated with variations in HDL-C levels. The influence of each polymorphism on lipid concentrations was evaluated with linear regression analyses after adjustment for age and sex. Among the variables studied including total cholesterol, LDL-C, high-density lipoprotein (HDL)-C, triglycerides, apolipoprotein A (Apo-A) and B (Apo-B), and lipoprotein alpha (LP alpha), HDL-C concentration was significantly different in models applied for polymorphisms ApoCIII T1100C, FV Gln506Arg, and ADRB2 Glu27Gln (p = 0.01, p = 0.018, p = 0.04, respectively). These results suggest that HDL-C levels in FH heterozygotes may be affected by several different genetic variants.  相似文献   

6.
Familial hypercholesterolemia (FH) is a common cause of a variety of cardiovascular diseases. The aim of this study was to uncover the underlying mechanism of FH and provide a possible treatment project for FH. We tried to identify the differently expressed genes (DEGs) involved in FH by comparing the gene expression profiles between FH and normal cells. We performed GO and biological pathway analysis of differently expressed genes with DAVID. We searched for candidates for FH treatment by analyzing DEGs between normal cells and FH cells and compared the differences with the DEGs caused by the small interfering molecules in The Connectivity Map (cmap). Using a bioinformatics method, we identified the abnormal metabolic processes in the cells of FH patients, including cell adhesion, material transport, signal transduction and gene expression, and found that the small molecule trazodone could be a potential drug in restoring the dysregulated metabolic pathway. In conclusion, candidates for further evaluation as possible therapeutic agents for FH have been identified using bioinformatics analysis of differentially expressed genes. Phenotype targeting using genomic profiling is a rational approach to drug discovery, which provides a new guideline in treatment of FH and a potential new clinical drug for FH patients.  相似文献   

7.
Summary Mutations of the low density lipoprotein (LDL) receptor in 16 Japanese kindreds with homozygous familial hypercholesterolemia (FH) were studied using an anti-LDL receptor antibody. The LDL receptor mutations in Japanese FH were heterogeneous and included defects in synthesis, posttranslational processing, ligand-binding activity, and internalization of the LDL receptor. Of the 16 kindreds, 10 were receptor-negative and 5, receptor-defective types and 1 was an internalization-defective type with respect to LDL binding. The receptor-negative group was further subdivided into four groups: those with cells producing (i) no immunodetectable receptor (five kindreds); (ii) 160-kd mature receptors, which were quite scarce (two kindreds); (iii) receptors that could not be processed to the mature receptor properly (two kindreds); and (iv) receptors with an apparent molecular weight smaller than normal (one kindred). The last kindred synthesized an about 155-kd mature receptor that was rapidly degraded. This finding is compatible with the low concentration of the cell surface LDL receptors and decreased binding activity for LDL in the cells of this kindred. The receptor-defective group, which could produce a residual amount of functional receptors, exhibited a lower tendency to coronary artery disease than the receptor-negative group.  相似文献   

8.
Heterozygous familial hypercholesterolemia (FH) is associated with a moderate decrease of plasma apoA-I and HDL-cholesterol levels. The aim of the study was to test the hypothesis that these abnormalities were related to an increase of HDL-apoA-I fractional catabolic rate (FCR). We performed a 14-h infusion of [5,5,5-(2)H(3)]leucine in seven control subjects and seven heterozygous FH patients (plasma total cholesterol 422 +/- 27 vs. 186 +/- 42 mg/dL, P < 0.001, respectively). Plasma apoA-I concentration was not changed in FH compared to controls (respectively 115 +/- 18 vs. 122 +/- 15 mg/dL, NS), and HDL-cholesterol level was decreased (37 +/- 7 vs. 46 +/- 19 mg/dL, NS). Kinetics of HDL metabolism were modeled as a single compartment as no differences were observed between HDL(2) and HDL(3) subclasses. Both mean apoA-I FCR and absolute production rate (APR) were increased in FH (respectively, 0.36 +/- 0.14 vs. 0.22 +/- 0.05 pool/d, P < 0.05, and 18.0 +/- 7.7 and 11.2 +/- 2.3 mg/kg/d, P < 0.05). Higher HDL-triglyceride and HDL-apoE levels were observed in patients with heterozygous FH. (Respectively 19 +/- 8 vs. 8 +/- 3 mg/dL, P < 0.05, and 5.3 +/- 0.8 vs. 3.7 +/- 0.9 mg/dL, P < 0.05). We conclude that the catabolism of HDL-apoA-I is increased in heterozygous FH patients. However, plasma apoA-I concentration was maintained because of an increased HDL-apoA-I production rate.  相似文献   

9.
The role of macrophage lipoprotein lipase (LPL) expression in atherosclerotic lesion formation was examined in low density lipoprotein receptor (LDLR(-/-)) mice using dietary conditions designed to induce either fatty streak lesions or complex atherosclerotic lesions. First, LDLR(-/-) mice chimeric for macrophage LPL expression were created by transplantation of lethally irradiated female LDLR(-/-) mice with LPL(-/-) (n = 12) or LPL(+/+) (n = 14) fetal liver cells as a source of hematopoietic cells. To induce fatty streak lesions, these mice were fed a Western diet for 8 weeks, resulting in severe hypercholesterolemia. There were no differences in plasma post-heparin LPL activity, serum lipid levels, or lipoprotein distribution between these two groups. The mean lesion area in the proximal aorta in LPL(-/-) --> LDLR(-/-) mice was significantly reduced by 33% compared with LPL(+/+) --> LDLR(-/-) mice, and a similar reduction (38%) in lesion area was found by en face analysis of the aortae. To induce complex atherosclerotic lesions, female LDLR(-/-) mice were lethally irradiated, transplanted with LPL(-/-) (n = 14), LPL(+/-) (n = 13), or LPL(+/+) (n = 14) fetal liver cells, and fed the Western diet for 19 weeks. Serum cholesterol and triglyceride levels did not differ between the three groups. After 19 weeks of diet, the lesions in the proximal aorta were complex with relatively few macrophages expressing LPL protein and mRNA in LPL(+/+) --> LDLR(-/-) mice. Analysis of cross-sections of the proximal aorta demonstrated no differences in the extent of lesion area between the groups, whereas en face analysis of the aortae revealed a dose-dependent effect of macrophage LPL on mean aortic lesion area in LPL(-/-) --> LDLR(-/-), LPL(-/+) --> LDLR(-/-), and LPL(+/+) --> LDLR(-/-) mice (1.8 +/- 0. 2%, 3.5 +/- 0.5% and 5.9 +/- 0.8%, respectively). Taken together, these data indicate that macrophage LPL expression in the artery wall promotes atherogenesis during foam cell lesion formation, but this impact may be limited to macrophage-rich lesions.  相似文献   

10.
This paper describes a sensitive method for study of the isoelectric point and molecular weight of immunoreactive low density lipoprotein (LDL) receptors of cultured human fibroblasts. The fibroblast receptors are solubilized with Triton X-100, partially purified by batch elution from DEAE-cellulose, and subjected to two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The proteins are transferred electrophoretically to nitrocellulose paper which is then incubated with a mouse monoclonal antibody (IgG-C7) directed against the LDL receptor, followed by an 125I-labeled antibody against mouse IgG. The receptor-bound monoclonal antibody is localized by autoradiography. By this technique, the immunodetectable LDL receptors from normal human fibroblasts migrate as a single spot with an isoelectric point of 4.3 and a Mr of approximately 160,000. In one patient with homozygous familial hypercholesterolemia whose cells fail to bind 125I-labeled IgG-C7, no immunoreactive LDL receptor spot was detected after electrophoresis. We also studied LDL receptors from three homozygotes whose cells bind 125I-IgG-C7, i.e. cross-reacting material-positive mutants. Their immunodetectable receptors were indistinguishable from normal receptors in terms of isoelectric point and molecular weight. Similarly, the receptors from one patient with the internalization-defective form of familial hypercholesterolemia showed normal electrophoretic migration. The immunoblotting technique should prove useful in analyzing structural alterations, if they exist, in LDL receptors from other subjects with cross-reacting material-positive forms of familial hypercholesterolemia.  相似文献   

11.
Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of TG-rich lipoproteins. To elucidate the physiological roles of LPL in lipid and lipoprotein metabolism, we generated transgenic rabbits expressing human LPL. In postheparinized plasma of transgenic rabbits, the human LPL protein levels were about 650 ng/ml, and LPL enzymatic activity was found at levels up to 4-fold greater than that in nontransgenic littermates. Increased LPL activity in transgenic rabbits was associated with as much as an 80% decrease in plasma triglycerides and a 59% decrease in high density lipoprotein-cholesterol. Analysis of the lipoprotein density fractions revealed that increased expression of the LPL transgene resulted in a remarkable reduction in the level of very low density lipoproteins as well as in the level of intermediate density lipoproteins. In addition, LDL cholesterol levels in transgenic rabbits were significantly increased. When transgenic rabbits were fed a cholesterol-rich diet, the development of hypercholesterolemia and aortic atherosclerosis was dramatically suppressed in transgenic rabbits. These results demonstrate that systemically increased LPL activity functions in the metabolism of all classes of lipoproteins, thereby playing a crucial role in plasma triglyceride hydrolysis and lipoprotein conversion, and that overexpression of LPL protects against diet-induced hypercholesterolemia and atherosclerosis.  相似文献   

12.
The role of macrophage lipoprotein lipase (LpL) in the development of atherosclerosis and adiposity was examined in macrophage LpL knockout (MLpLKO) mice. MLpLKO mice were generated using cre-loxP gene targeting. Loss of LpL in macrophages did not alter plasma LpL activity or lipoprotein levels. Incubation of apolipoprotein E (ApoE)-deficient β-VLDL with peritoneal macrophages from ApoE knockout mice lacking macrophage LpL (MLpLKO/ApoEKO) led to less cholesteryl ester formation than that found with ApoEKO macrophages. MLpLKO/ApoEKO macrophages had reduced intracellular triglyceride levels, with decreased CD36 and carnitine palmitoyltransferase-1 mRNA levels compared with ApoEKO macrophages, when incubated with VLDL. Although both MLpLKO/ApoEKO and ApoEKO mice developed comparable hypercholesterolemia in response to feeding with a Western-type diet for 12 weeks, atherosclerosis was less in MLpLKO/ApoEKO mice. Epididymal fat mass and gene expression levels associated with inflammation did not differ between the two groups. In conclusion, macrophage LpL plays an important role in the development of atherosclerosis but not adiposity.  相似文献   

13.
We have identified the molecular basis for familial lipoprotein lipase (LPL) deficiency in two unrelated families with the syndrome of familial hyperchylomicronemia. All 10 exons of the LPL gene were amplified from the two probands' genomic DNA by polymerase chain reaction. In family 1 of French descent, direct sequencing of the amplification products revealed that the patient was heterozygous for two missense mutations, Gly188----Glu (in exon 5) and Asp250----Asn (in exon 6). In family 2 of Italian descent, sequencing of multiple amplification products cloned in plasmids indicated that the patient was a compound heterozygote harboring two mutations, Arg243----His and Asp250----Asn, both in exon 6. Studies using polymerase chain reaction, restriction enzyme digestion (the Gly188----Glu mutation disrupts an Ava II site, the Arg243----His mutation, a Hha I site, and the Asp250----Asn mutation, a Taq I site), and allele-specific oligonucleotide hybridization confirmed that the patients were indeed compound heterozygous for the respective mutations. LPL constructs carrying the three mutations were expressed individually in Cos cells. All three mutant LPLs were synthesized and secreted efficiently; one (Asp250----Asn) had minimal (approximately 5%) catalytic activity and the other two were totally inactive. The three mutations occurred in highly conserved regions of the LPL gene. The fact that the newly identified Asp250----Asn mutation produced an almost totally inactive LPL and the location of this residue with respect to the three-dimensional structure of the highly homologous human pancreatic lipase suggest that Asp250 may be involved in a charge interaction with an alpha-helix in the amino terminal region of LPL. The occurrence of this mutation in two unrelated families of different ancestries (French and Italian) indicates either two independent mutational events affecting unrelated individuals or a common shared ancestral allele. Screening for the Asp250----Asn mutation should be included in future genetic epidemiology studies on LPL deficiency and familial combined hyperlipidemia.  相似文献   

14.
The molecular basis of familial hypercholesterolemia (FH) in three families of Spanish descent from La Habana was investigated by the candidate gene approach. The Arg3500Gln mutation of apolipoprotein B-100 was not found. Identification of low density lipoprotein receptor (LDLR) gene haplotypes segregating with FH guided the characterisation of three point mutations by automated sequencing. One, a Val408Met missense mutation, a founder mutation in Afrikaner FH patients, was recurrent, being associated with a distinct DNA haplotype. The other two, Glu256Lys and Val776Met missense mutations, were novel and modified highly conserved residues. These mutations were absent in normolipidemic subjects and were associated in heterozygous carriers with twice the cholesterol levels observed in noncarriers. Noticeably, cardiovascular complications were rarely observed in older heterozygotes, even in those with the Afrikaner FH-2 mutation. These findings confirm the molecular heterogeneity of LDLR gene mutations causing FH and the variability of their expression across different populations.  相似文献   

15.
In a collection of DNA samples from 100 unrelated patients with clinical features of familial hypercholesterolemia (FH), a search for mutations of exons 4 and 10 of the low-density lipoprotein (LDL) receptor gene was performed using heteroduplex and single-strand conformational polymorphism (SSCP) analyses followed by sequencing of amplified DNA fragments. Four new mutations of the LDL receptor gene were identified: C146R (c.499 T > C), A130P (c.451 G > C), G128G (c.477 T > C), and C188Y (c.626 G > A). Mutation A130P was assigned to the same chromosome with allele variant 447C. Two polymorphic sites in exon 10 of the LDL receptor gene (1413G/A and 1545C/T) were found in the Russian population for the first time. Based on the data obtained, familial hypercholesterolemia was confirmed in seven patients.  相似文献   

16.
《Epigenetics》2013,8(5):718-729
Gene polymorphisms associated so far with plasma lipid concentrations explain only a fraction of their heritability, which can reach up to 60%. Recent studies suggest that epigenetic modifications (DNA methylation) could contribute to explain part of this missing heritability. We therefore assessed whether the DNA methylation of key lipoprotein metabolism genes is associated with high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride levels in patients with familial hypercholesterolemia (FH). Untreated FH patients (61 men and 37 women) were recruited for the measurement of blood DNA methylation levels at the ABCG1, LIPC, PLTP and SCARB1 gene loci using bisulfite pyrosequencing. ABCG1, LIPC and PLTP DNA methylation was significantly associated with HDL-C, LDL-C and triglyceride levels in a sex-specific manner (all P < 0.05). FH subjects with previous history of coronary artery disease (CAD) had higher LIPC DNA methylation levels compared with FH subjects without CAD (P = 0.02). Sex-specific multivariable linear regression models showed that new and previously reported epipolymorphisms (ABCG1-CpGC3, LIPC-CpGA2, mean PLTP-CpGC, LPL-CpGA3, CETP-CpGA2, and CETP-CpGB2) significantly contribute to variations in plasma lipid levels (all P < 0.001 in men and P < 0.02 in women), independently of traditional predictors such as age, waist circumference, blood pressure, fasting plasma lipids and glucose levels. These results suggest that epigenetic perturbations of key lipoprotein metabolism genes are associated with plasma lipid levels, contribute to the interindividual variability and might partially explain the missing heritability of plasma lipid levels, at least in FH.  相似文献   

17.
Gene polymorphisms associated so far with plasma lipid concentrations explain only a fraction of their heritability, which can reach up to 60%. Recent studies suggest that epigenetic modifications (DNA methylation) could contribute to explain part of this missing heritability. We therefore assessed whether the DNA methylation of key lipoprotein metabolism genes is associated with high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride levels in patients with familial hypercholesterolemia (FH). Untreated FH patients (61 men and 37 women) were recruited for the measurement of blood DNA methylation levels at the ABCG1, LIPC, PLTP and SCARB1 gene loci using bisulfite pyrosequencing. ABCG1, LIPC and PLTP DNA methylation was significantly associated with HDL-C, LDL-C and triglyceride levels in a sex-specific manner (all P < 0.05). FH subjects with previous history of coronary artery disease (CAD) had higher LIPC DNA methylation levels compared with FH subjects without CAD (P = 0.02). Sex-specific multivariable linear regression models showed that new and previously reported epipolymorphisms (ABCG1-CpGC3, LIPC-CpGA2, mean PLTP-CpGC, LPL-CpGA3, CETP-CpGA2, and CETP-CpGB2) significantly contribute to variations in plasma lipid levels (all P < 0.001 in men and P < 0.02 in women), independently of traditional predictors such as age, waist circumference, blood pressure, fasting plasma lipids and glucose levels. These results suggest that epigenetic perturbations of key lipoprotein metabolism genes are associated with plasma lipid levels, contribute to the interindividual variability and might partially explain the missing heritability of plasma lipid levels, at least in FH.  相似文献   

18.
A mutant low density lipoprotein (LDL) receptor with abnormal ligand binding and recycling abilities was found in a patient with familial hypercholesterolemia. The molecular weights of the precursor and the mature form of the receptor were 72,000 and 115,000, respectively, which were about 45,000 smaller than those of the normal receptor. The mutant receptor was concluded to be present on the cell surface because the mature form was susceptible to Pronase digestion, and specific monoclonal antibody against the LDL receptor (IgG-C7) could bind to the cell surface. This mutant receptor could not bind LDL, but could bind other ligands for the LDL receptor, beta-migrating very low density lipoprotein, and the apolipoprotein E-lipid complex. After the receptor bound to the ligand, it disappeared from the cell surface of the mutant cells faster than that of normal cells, showing that, in the mutant cells, the receptor was not efficiently recycled back to the cell surface. Southern blotting of the genomic DNA from the patient showed a large deletion of about 12 kilobases around the epidermal growth factor precursor homology domain. For further characterization of the mutant, we cloned a 9.4-kilobase EcoRI/XbaI fragment, which was expected to contain the deletion joint. Mapping and sequencing analyses of the receptor gene showed that exons 7-14 were deleted. The nucleotide sequence suggested that this mutation may have occurred by recombination between repetitive Alu sequences in introns 6 and 14 of the receptor gene. The recombination brought about a complete deletion of the gene coding the epidermal growth factor precursor homology domain. The characteristics of the receptor protein produced by this mutation were similar to those of an artificial mutation constructed by Davis et al. (Davis, C. G., Goldstein, J. L., Südhof, T. C., Anderson, R. G. W., Russell, D. W., and Brown, M. S. (1987) Nature 326, 760-765) in which the whole gene coding this domain was deleted. The clinical phenotype of the patient having this mutation was similar to that of so-called "receptor-defective" type familial hypercholesterolemia, in which cells show detectable, but markedly reduced activity of the LDL receptor.  相似文献   

19.
The present study examined whether hypolipidemic therapy with a potent 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, pravastatin, influences corticosteroid metabolism in patients with heterozygous familial hypercholesterolemia (FH). Urinary excretion of tetrahydrocortisone, tetrahydrocortisol, 6 beta-hydroxycortisol and free cortisol were determined in 22 patients with heterozygous FH before and after pravastatin administration (10 mg/day for 2 months). Pravastatin induced a statistically significant decrease in serum total cholesterol in patients with heterozygous FH from 6.9 +/- 0.1 to 5.9 +/- 0.1 mmol/l (p less than 0.05). No significant changes were seen in the urinary tetrahydrocortisone, tetrahydrocortisol and free cortisol levels before and after pravastatin therapy. Urinary excretion of 6 beta-hydroxycortisol was significantly (p less than 0.05) increased after pravastatin administration. These results suggest that the hypolipidemic effect of pravastatin in patients with heterozygous FH does not influence the corticosteroid metabolism. The increase in urinary 6 beta-hydroxycortisol may be caused by pravastatin-induced hepatic microsomal 6 beta-hydroxylase induction.  相似文献   

20.
Familial hypercholesterolemia (FH) is a congenital disorder of plasma low density lipoprotein (LDL) metabolism resulting from the defect or malfunction of LDL receptors on the cell surface. In most cases of FH, LDL binding to the cell surface is disrupted, while in some special cases LDL binding to the receptors occurs normally but the internalization of the bound LDL is inhibited (internalization-defective type). We studied the biosynthesis and transport of the LDL receptor in cultured fibroblasts obtained from one of the internalization-defective mutants by using [35S]methionine labeling and detection with anti-LDL receptor antibody. The mutant cells synthesized LDL receptors with a molecular weight slightly smaller than normal as shown in SDS-polyacrylamide gel electrophoresis. A large portion of the synthesized receptors was secreted into the medium while the other portion was associated with the cells. The apparent molecular weight of the receptors secreted into the medium was about 10 kDa smaller than that of the cell-associated receptors. The cell-associated form was converted into the secreted form following a prolonged incubation of the cells, showing the precursor-product relationship between the cell-associated and the secreted forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号